
www.manaraa.com

DEVELOPMENT OF A WEB-BASED SURVEYING INSTRUMENT TO

IDENTIFY PROBLEM-SOLVING ABILITIES RELATED TO EFFECTIVE

INSTRUCTION IN COMPUTER PROGRAMMING

by

Jorge Vasconcelos-Santillan

A dissertation submited to The Johns Hopkins University in conformity

with the requirements for the degree of Doctor of Philosophy

Baltimore, Maryland

January, 2008

2008 Jorge Vasconcelos

All rights reserved

www.manaraa.com

UMI Number: 3309769

Copyright 2008 by

Vasconcelos-Santillan, Jorge

All rights reserved.

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3309769

Copyright 2008 by ProQuest LLC.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway

PO Box 1346
Ann Arbor, Ml 48106-1346

www.manaraa.com

Abstract

This dissertation presents the modeling and development of a test for algorithmic

problem-solving skills; an instrument specialized in surveying fundamental abilities

in computer programming. This action research study has been driven by an

educational need to understand what prevents many college students from learning

to elaborate computer programs and has been performed under the premise that a

large number of instructional challenges are due to factors indirectly related with

coursework like deficiencies in reading, arithmetic, or algebra; abilities which

mastery precedes the programming level. The work has been grounded in a

constructivist theoretical framework and has followed a hermeneutic approach to

understand and integrate common programming errors, programming-specific

thinking styles and problem-solving ability domains. The final product, a web-based

survey prototype —the initial stage of a screening platform— is already being used

to better identify, and star t benchmarking, problem-solving skills essential in

effective learning of computer programming. The software tool, along with the

methodological framework associated, are aimed to provide programming

instructors with information and resources to differentiate instruction according to

diverse levels of problem-solving abilities, as well as help students to reflect on their

problem solving strengths, while gaining a deeper understanding of the knowledge,

abilities, and cognitive processes needed to become skillful in creating algorithms

and elaborate computer programs.

Advisors: Dr. Susan M. Blunck and Dr. Scott F. Smith

Reader: Dr. Gerald M. Masson

ii

www.manaraa.com

Acknowledgements

This work was supported by the National Council of Science and Technology of

Mexico (CONACyT) and the Institute of International Education through the

Program Fulbright-Garcia-Robles-CONACyT, scholarship #12345-678; the

Encyclopedia Britannica Program for Latin America, and The Johns Hopkins

University through the Department of Computer Science, the Whiting School of

Engineering, and the Information Security Institute.

This dissertation had not been possible without the invaluable guidance and

patience of my advisors Dr. Susan Blunck and Dr. Scott Smith, neither without the

prompt intervention of Dr. David Nasrallah, Dr. Elias Shaya, and Dr. Vernon

Savage during rough times. The author also wants to express his deepest gratitude

to my family, Mario, Luz, and Nora, for their continuous support; to my Professors

Dr. Joanne Houlahan, Dr. Stuart "Bill" Leslie, Dr. Gerry Masson, and Dr. Jon Cohen

for pointing the way; and to my friends Horacio Jaramillo, Peggy Hayeslip,

Stephanie Regenold, Emily LaBathe, Nick Arrindell, Linda Rorke, Debbie DeFord,

Cathy Thornton, Steve DeBlasio, and Steve Rifkin, for their continuous

encouragement.

iii

www.manaraa.com

This work benefited from lengthy discussions with colleagues and former

students, especially Jacobo Hernandez, Norma Angelica Gonzalez, Haydee

Rodriguez, Juan Carlos Valencia, Soraya Assar, Zara Khalid, and Jennifer Bair, but

also many others. Thanks to all of them.

Finally, a special recognition to the people who helped me in testing the

software and providing valuable feedback about its features and how to improve

them: Ingrid Belmont, Steve DeBlasio, Claudia de Leon, Svetlana Goncharova,

Jacobo Hernandez, Jaime R. Martinez, Miguel Orozco, Steve Rifkin, Haydee

Rodriguez, Juan Carlos Valencia, Nora Vasconcelos, and Jiahui Zhao.

Jorge Vasconcelos

December 2007

iv

www.manaraa.com

Contents

Abstract ii

Acknowledgements iii

Contents v

List of Figures ix

List of Tables xi

Preface xii

1 Introduction 1
1.1 The Need for Computer Programming Education 1
1.2 Challenges in Programming Education 2

1.2.1 The Classroom Battleground 3
1.2.2 Unclear Expectations 3

1.3 The McCracken Study 5
1.4 On the Complexities of Making Programs 6

1.4.1 Overview of the Activity 6
1.4.2 Multiplicity of Knowledge Domains 7

1.5 Factors Affecting Problem-Solving Ability 9
1.5.1 Problem Solving and Programming 9
1.5.2 Fragility in Problem-Solving Skills 11

1.6 Study Description 13
1.6.1 Problem of concern 13
1.6.2 Initial Research Question 14
1.6.3. The Exploratory Study 14
1.6.4. The Final Study 15

v

www.manaraa.com

2 Conceptual Framework 16
2.1 Introduction 16
2.2 Research Tools to Study a Dynamic Topic 17

2.2.1 Hermeneutics: Search for Understanding 17
2.2.2 Action Research: Observing while Practicing 17

2.3 The Constructivist Paradigm 19
2.4 Educational Elements of Programming 20
2.5 The "Waterfall" Lifecycle Revisited 23
2.6 Research in Computer Science Education 29

2.6.1 Overview 29
2.6.2. Programming and Problem Solving 30

2.7 Problem Solving 30
2.7.1 Capabilities for programming 30

3 Surveying Problem-Solving Ability 34
3.1 Introduction 34
3.2 Main Concerns on Assessing Problem Solving 35
3.3 The Study's First Phase 36

3.3.1 A Preliminary Survey 36
3.3.2 Characteristics of the Pilot Application 37

3.4 Guidelines for Surveying Problem Solving 38
3.4.1 Inventory of Common Pitfalls 38
3.4.2 Categories of Questions 38
3.4.3 Interpretation of Answers 42

3.5 Automated Surveying 46
3.5.1 Paper-Based Lessons 46
3.5.2 Key Features of a New Survey 47
3.5.3 From Paper-Based to Web-Based 48
3.5.4 Adapting Question Types 49
3.5.5 Skill Tracking Variables 52
3.5.6 Question Calibration 54
3.5.7 Adapting Test Engine to Question Type 56

3.6 Enhanced Multiple-Choice Questions 59
3.6.1 Rating Confidence on Answer 59
3.6.2 Option to Skip Question 60

3.7 Web-Based Survey Prototype 62
3.7.1 The Questionnaire 62
3.7.2 Front-end 65

3.8 The Study's Second Phase 66
3.8.1 Demographics 66
3.8.2 Scoring 69

vi

www.manaraa.com

3.8.2 Data Verification 69
3.8.3 Question Validation 89
3.8.4 Data Interpretation 70
3.8.5 Application Feedback 70

4 Results and Discussion 71
4.1 Summary of Results 71
4.2 Analysis of Results 72

4.2.1 Survey Overview 73
4.2.2 Results from the Non-Experienced Subgroup 75
4.2.3 Results from the Literate Subgroup 76
4.2.4 Results from the Experienced Subgroup 77

4.3 The Confidence Factor 78
4.4 Analysis of Skill Strength 79
4.5 Purposely-Selected Cases 81

4.5.1 Looking at Individual Level 81
4.5.1 General Feedback 83

5 Conclusions and Impact 86
5.1 Overview 86
5.2 Discussion of Key Findings 88

5.2.1 The Questionnaire 88
5.2.2 Self-Rating Confidence 92
5.2.3 Motivation 93
5.2.4 Flexible Surveying Mechanism 94

5.3 Contributions 95
5.3.1 Theoretical Aspects 95
5.3.2 Practical Benefits 96

5.4 Future Work 96
5.5 Summary 98

Bibliography 99

Appendix A: Surveying Problem Solving 119
A.l. Introduction 119
A.2. Reading Comprehension 119
A.3. Problem identification 121
A.4. Algebraic Manipulation 121
A.5. Planning Strategy 122
A.6. Process Analysis 123
A. 7. Background 123

vii

www.manaraa.com

A.8. Model Survey 125
A.9. Analysis of Survey Administered 131

Vita 138

viii

www.manaraa.com

List of Figures

1.1 McCraken's Model of the Problem-Solving Process in the Domain
of Computer Science 6

1.2 Polya's Classic Strategy to Solve Problems 10
1.3 Problem-Solving Throughout the Programming Lifecycle 10
1.4 Factors Affecting Problem-Solving and Programming 11

2.1 Hermeneutic Cycle of Understanding 18
2.2 A Model of Educational Elements in Introductory Programming 21
2.3 Screening Development of Problem-Solving Abilities 23
2.4 The Waterfall Model for the Lifecycle of Programming 24
2.5 The Waterfall Model of Programming with Refinement Cycles 24
2.6 McCracken and Polya Models and Stages of a Programming Lifecycle 26
2.7 Model of Five Ability Domains (5-AD) for Algorithmic Problem Solving 33

3.1 A "Reverse Algebra Word Problem" with Partially Correct Options 42
3.2 Example of a "Reading Comprehension" Problem 44
3.3 A "Following Procedure" Problem with a Symbolic Solution 45
3.4 Main Functional Components of TAPSS 2.0 Testing Engine 49
3.5 Example of a Debugging Problem 50
3.6 Example of a Multiple-Choice Question on Planning 51
3.7 Example of an Algebra Word Problem 53
3.8 Model of Linked Questions to Oversample Skill Space 55
3.9 Descriptor of a Simple MCQ Problem 56
3.10 An MCQ Problem Enhanced with Confidence Level 59
3.11 An MCQ Problem with Skipping Option 61
3.12 State-Diagram Model of TAPSS 2.0 Front-end 65

4.1 Skill Strength According to Level of Programming Expertise 72
4.2 Average Results from TAPSS 2.0 Pilot Administration 74
4.3 Results from Applicants with no Programming Experience 76

ix

www.manaraa.com

4.4 Results from Applicants with Programming Experience at
Literacy Level 77

4.5 Results from Applicants with Programming Experience 78
4.7 Average Skill Strength from TAPSS 2.0 Pilot Administration 80
4.8 Skill Strength from Applicants with Programming Experience

at Literacy Level 80
4.9 Skill Strength from Applicants with Programming Experience

at Literacy Level 81
4.10 Results from an Applicant with Programming Experience at

Literacy Level 82
4.11 Comments on the Submission from a Non-Experienced Applicant 83
4.12 Comment on the Question Regarding Critical Thinking and

Attention to Details. (Literate subgroup.) 83
4.13 General Comment on the Survey (Literate subgroup.) 84
4.14 Survey Review through and Online Interview. (Experienced

programmer.) 85

A.l A Reading Comprehension Question 120
A.2 A Problem Identification Question 121
A.3 A Problem on Arithmetic Skills with Numerical Answer 122
A.4 A Problem on Arithmetic Skills with Algebraic Answer 122
A.5 A Problem on Planning 123
A.6 A Problem on Debugging 123
A.7 Several Questions on general background 124

x

www.manaraa.com

List of Tables

1.1 Knowledge Domains for Introductory Programming 8
2.1 Common Problems to Elaborate Programs 27
2.2 Summary of Factors Affecting Programming Education 31
3.1 Components of the Preliminary Survey 36
3.2 Inventory of Common Pitfalls in Algorithmic Problem Solving 39
3.3 Inventory of Sub-Domains of Algorithmic Problem-Solving Ability

and Skill Tracking Codes 53
3.4 Descriptors According to Question Type 57
3.5 Inventory of skills surveyed with TAPSS 2.0 63
3.6 Score Adjustment According to Confidence Level 67
3.7 Main Sub-Domains Associated to Questions in TAPSS 2.0 68
3.8 Linked Questions to Oversample Skill Domains 69
4.1 Summary of Skill Strength According to Programming Expertise 71
5.1 Questionnaire Items and Corresponding Skills 87
5.2 Main Comments about Questionnaire Items 91

xi

www.manaraa.com

Preface

"When we had a few weak computers, programming became

a mild problem, and now we have gigantic computers,

programming has become an equally gigantic problem."

Edsger W. Dijkstra, 1972 [174]

As any human endeavor, the development and implications of the computer machine

have an inherent cultural value, worthy of teaching and studying in any classroom.

However, because of the revolution it has driven, education at literacy level has

proven to be insufficient to enable users to successfully interact with information

technologies, which support the information infrastructure of today's world.

Attentive to this emerging situation, institutions of scholars and professionals have

set guidelines to promote thorough education in this field.

The National Research Council (NRC) introduced the notion of fluency —

deep and dynamic integration of concepts, capabilities and skills to understand and

get involved with information technologies [122]— and the Association for Computer

Machinery (ACM), in a joint effort with the Institute of Electrical and Electronics

Engineers (IEEE), developed a new curricular model for higher education in

computer science [1].

xii

www.manaraa.com

However, carrying out the recommendations have resulted in challenges as

diverse and profound as the complexities the computers have brought, particularly

to what computer programming respects. Hence, despite the best efforts of teachers

and schools to respond to this imperious social need, a very large number of students

fail to acquire the programming skills expected after introductory courses —

understanding a problem description, decomposing it into sub-problems, developing

individual solutions and integrating them into a complete one, and then evaluating

the whole process and its outcome [76, 87, 97, 110, 117]. International studies of

programming skills have reported this as a serious and extended problem,

apparently independent of country and educational system [110, 117]; a problem

that precludes students from better utilization of computer applications, discourages

them from pursuing further studies in computing [76, 87] and, thus, fails to attend

industry and academy demands for people versed in information technologies

[17, 142].

The recurrence of these situations, both at individual and institutional levels,

has led programming instructors to wonder why this activity is so difficult, how to

teach it, and how to facilitate its learning.

Throughout 17 years of teaching programming, this author has witnessed a

large number of students struggling whenever asked to create algorithms or develop

the corresponding programs, being unable to extend, or even to reuse, already

working programs, or to explain the reasoning behind them. So, motivated by such

experiences, and looking forward to improve his own practice, the author initiated a

research study of factors favoring or impeding the process of learning to program

xiii

www.manaraa.com

computers, as well as constructivist approaches to address them at the problem-

solving level.

Such study involved identifying domains of cognitive abilities related to

algorithmic problem solving —the intellectual foundation of computer programming

[130]— and designing a screening instrument to identify them during introductory

programming courses.

The study, presented to detail in the following chapters, also responds to this

screening need, also pointed out by scholars like Mayer [114, p.610], Lister and

Fitzgerald [110, pl39], Kramer [100, p.42], and Hazzan (commented in [100].) It has

expanded our previous constructivist studies in programming education, explored

alternative models and techniques for testing problem-solving ability, as well as

technical aspects of automated assessment in introductory programming education.

Chapter 1 presents an overview of the current state of computer

programming education: the need, the challenges, the main problem and an

introduction to the complexities of making programs. The study prompted

afterwards is explained in this chapter.

Chapter 2 provides a discussion of the theoretical elements upon which the

study is grounded, featuring both, the literature review and the conceptual

constructs specific to this study. In addition, this chapter presents a thorough

review of the problem-solving issues affecting programming instruction.

Chapter 3 describes the surveying instrument developed to better appreciate

problem-solving skills within five ability domains: (i) reading comprehension, (ii)

problem abstraction, (Hi) algebraic and logic manipulation, (iv) stepwise planning,

xiv

www.manaraa.com

and (v) process analysis: tracing and debugging. Chapter 4 presents and discusses

the results of piloting such instrument.

Finally, Chapter 5 provides further discussion on the results and experience

of piloting the surveying instrument and proposes future lines of research.

The conceptual framework developed, along with the methodology followed,

constitute a new model of guidelines for computer science educators to reflect on

their own practices, evolve their works more efficiently, and gain insights regarding

the different levels of problem-solving abilities of their students. In addition, as

example of its applicability, a prototype of a computer-based test has been

developed, laying the foundation to develop a software platform to screen students'

problem-solving skills with relative efficiency and, by periodic application, of this

surveying system, trace skills development throughout the course.

xv

www.manaraa.com

Chapter 1

Introduction

1.1 The Need for Computer Programming Education

As dependence on information technologies has increased, the level of computer

science expertise demanded by society has shifted from passive literacy to active

fluency. Nowadays, the workplace demands "knowledge workers," able to solve

problems, analyze knowledge, and use technology effectively [158].

According to the study Being Fluent with Information Technologies,

published by the National Research Council in 1999 [122], besides the need to

interact with constantly changing computer environments, specific capabilities in

computer programming, algorithmic thinking, and problem solving, are now

required to enable users to successfully interact with the information infrastructure

of today's world [3, 122, 151, 152]. Furthermore, the Association for Computer

Machinery, in a joint effort with the Institute of Electrical and Electronics

Engineers, developed a new curricular model for higher education in computer

science [1], which specifically points programming skills as particularly fundamental

for computer science students (p.22).
1

www.manaraa.com

Besides being foundational for software development, learning programming

promotes intellectual abilities such as general problem solving, methodological

reasoning, and logical thinking, essential to understanding and managing the

intrinsic complexity of modern information systems, in addition to allowing better

utilization of computer applications [151]. Moreover, Knuth [96] has expressed that

"this knowledge is preparation for much more than writing good computer programs;

it is a general-purpose mental tool that will be a definite aid to the understanding of

other subjects" (p. 10), Cunningham [42] regards problem solving as "the most

important value-added part of computer science education." (p. 181), and Kramer [99]

claims that the meticulosity acquired by practicing programming and algorithmic

thinking, i.e., building and verifying a product step-by-step, can be applied to a wide

range of products and services.

1.2 Challenges in Programming Education

As expressed by John Carroll, learning something new is generally difficult, and

helping someone else to learn, is even more difficult [34]. Computer programming is

one of the best examples of such claim.

The praxis of computer education has shown that instructional difficulties in

programming are old, complex, and diverse [6, 16, 27, 34, 72, 150, 177], and found

whenever students struggle dramatically to cope with coursework [124, 135],

withdraw from courses [81, 120, 177], or finishing them without being able to create

any program [30, 94, 117, 109].

2

www.manaraa.com

1.2.1 The Classroom Batt leground

The literature in this field is profuse with examples and anecdotes reflecting the

hardships of learning to program computers. For example, Palakal [124] points out

that students' attention goes to learn either theoretical concepts or programming

language (p.l), Proulx [135] comments about the frustrating experience of meeting

bright students who become lost when asked to write even the simplest program

(p.80), and Barnes [10] cites the common case of students who say "I just don't know

how to start with this task..."

Furthermore, Buck [29] and Linn [108] refer the multiple times students just

do random attempts to produce a working program (p. 17 and p. 121, respectively),

Thomas [161] and Jenkins [90] mention how many students finish courses vowing

that their final projects or future careers will not include programming at all (p.53

and p.3, respectively), and Lister [109] states that "stronger [programming] students

are not challenged while the weaker students flounder." (p.143).1

Situations like these have become increasingly evident as academic

institutions keep incorporating computer science and information technology courses

into their curricula, and have made scholars around the world wonder why this

activity is so difficult, how to teach it, or how to facilitate its learning.

1.2.2 Unclear Expectat ions

Oftentimes, programming goals have been set according to instructors' preferences

or experience [28, p.75; 164], programming tools availability or industry trends, and,

1 Each of the issues previously mentioned has been repeatedly experienced and commented by the

author and colleagues [76, 87].

3

www.manaraa.com

consequently, computer science literature became very diverse regarding learning

objectives. In the cases of problem solving and programming skills, they have often

treated in generic terms without clearly defining them.

In 2001, the ACM-IEEE Computing Curricula 2001 for Computer Science [1]

set a general outline for courses on programming fundamentals, which included

topics on algorithmic problem-solving process and programming constructs. The

document also stated cognitive capabilities and skills to be expected from computer

science graduates: knowledge and understanding, modeling, requirements, critical

evaluation and testing, methods and tools, and professional responsibility.

This very same year, Bailey and Stefaniak's [9] identified 85 concrete skills

that industry regarded as important assets for programmers. The top five were:

(i) ability to read, understand, and modify programs written by others, (ii) ability to

code programs, (Hi) ability to debug software, (iv) listening skills, and (v) problem-

solving process (specifically, identify and analyze problems, and design of decision

trees.)

However, expectations have not become clear yet. In a reflection about

current practices in software development, Clear [38] even wonders "what is

programming?" while Thompson, Hunt and Kinshuk [164] present different

conceptions of learning this activity, such as solving problems, learning a

programming language, or becoming part of a technical community.

Recently, Stone and Madigan [158] noticed that, despite workplace demands

"knowledge workers" (i.e., people able to solve problems, analyze knowledge, and use

technology effectively) there are disturbing inconsistencies among state standards,

student abilities, and student perception of their information technology abilities. It

4

www.manaraa.com

is worthy of mention that their study focused only in elementary tasks (like saving

documents, using antivirus, or performing internet searches) without even entering

in the realm of problem solving or programming.

1.3 The McCracken Study

The most dramatic instance of the instructional issues in programming was

acknowledged, and widely exposed, by a working group of the 6th Conference on

Innovation and Technology in Computer Science Education (ITiCSE 2001), that

performed a study on whether programming students could actually elaborate

programs [117].

The Multi-national, Multi-institutional Study of Assessment of Programming

Skills of First-Year CS Students started by setting up a framework of learning

objectives for introductory programming courses (fig. 1.1), according to the ACM-

IEEE Computing Curricula 2001 [1], and then testing programming ability through

a trial assessment administered to college students in several universities in

different countries. Lack of positive results led the group to express "many students

do not know how to program at the conclusion of their introductory courses... This

implies that it was the students' knowledge, rather than their skills, that enabled

them to successfully complete their first year courses." (p. 125 and p.134.)2

Subsequent analysis revealed important clues on what seemingly prevented

students from completing the requested programs: (i) difficulties in abstracting the

2 The McCracken group is referring here to factual knowledge (the know-what) only as knowledge and

to procedural knowledge (the know-how) as skills [70]. Ala-Mutka refers to them as programming

knowledge and programming strategies, respectively [5].

5

www.manaraa.com

problem out of the exercise statement, (ii) inability to implement the planned

strategy, (Hi) insufficient time to solve the exercise, and (iv) unsuccessful interaction

with the programming environment.

1. Abstract the problem from its description: Identify relevant aspects

from the statement and model them in the proper abstraction framework.

2. Generate sub-problems: Break the problem down into simpler, more

manageable ones.

3. Transform sub-problems into sub-solutions: Design detailed strategies

to solve each sub-problem and implement them with a computer language.

4. Re-compose the sub-solutions into a working program: Integrate

(correctly) every piece of the solution into one program.

5. Evaluate and iterate: Test and debug the program until it works correctly,

then determine if the whole process has led to a good solution.

FIGURE 1.1. McCraken's Model of the Problem-Solving Process in the

Domain of Computer Science [117]. Analogous models appear in [41, 30, 54, 111].

1.4 On t h e Complex i t i e s of M a k i n g P r o g r a m s

1.4.1 Overview of the Activity

Programming a computer is much more than just assembling instructions for

enabling a machine to perform a particular job. In its most general form,

programming encompasses four fundamental aspects: (i) understanding the job to be

accomplished, (ii) specifying a detailed plan that can be carried out by the computer,

(Hi) mapping the plan into the constructs of a programming language, and (iv) using

a programming environment to transfer the mapped plan to the computer and verify

if the goals have been fulfilled [149].

6

www.manaraa.com

1. In order to understand the objective of the desired program, the

programmer must become acquainted with the fundamentals of the

discipline related to the problem, and comprehend what exactly is being

requested.

2. To make a plan, the programmer must have, at least, minimal knowledge

about what the computer is able to do, and the ability to properly put

those operations together to reach the desired goal.

3. To implement the plan, the programmer must know the words and rules

of a programming language, and should know how they represent

computer operations and their effects on the data.

4. Both plan and program are just theoretical entities, unable to perform

anything until properly transferred into a computer, which is achieved by

means of software tools. Thus, the programmer requires some dexterity in

using these tools. Finally, to review the program, the programmer must

keep in mind the global goal; identify the origin and nature of errors, and

predict outcomes.

1.4.2 Multiplicity of Knowledge Domains

The cognitive demands of each aspect of programming are diverse and can be

classified within four different domains of knowledge: (i) methodological problem

solving, (ii) programming language, (Hi) programming environment functionality,

and (iv) conceptual background specific to problem. Such distinction is necessary to

better understand the challenges faced by programming students (see table 1.1.)

7

www.manaraa.com

To succeed, the student needs to become skillful in each domain, i.e. learn,

understand, and effectively apply concepts and techniques from each one, usually

simultaneously and in a short period of time. Not being difficult enough, issues in

any domain can hide student's particular strengths and weaknesses in other

domains, leaving instructors unable to distinguish where the student actually needs

help.

Domain

I

Methodological

problem solving

II

Programming

language

III

Programming

environment

functionality

IV

Problem-specific

conceptual

background.

Concepts/Skills to be Developed

• Become skillful at creating problem-

solving strategies.

• Become aware of the mental processes

required to make such creations.

• Being able to visualize the sequence of

actions a strategy will require.

• Learn syntax and semantics of a formal

language.

• Develop ability to find and apply

additional programming resources.

• Learn the to interact with the

development platform.

• Become skillful at reading and

interpreting error messages.

• Develop the ability to gather

information not specifically stated like

the context of the problem or the theory

behind it.

TABLE 1.1. Knowledge Domains for Introductory Programming. 3 Some aspects

of this model also appear in [5, 27, 105, 149, 178].

3 In a recently study, Gray, et al [77] have briefly analyzed different aspects of programming, which

they called "dimensions."

8

www.manaraa.com

Because of this situation, the challenges in programming education should be

analyzed from four different perspectives: as a problem-solving skill, as a

phenomenon of (formal) language acquisition, as a result of computer interaction,

and even by its psychological factors (like attitude, predisposition, fear, anxiety, etc.)

1.5 Factors Affecting Problem-Solving Ability

1.5.1 Problem Solving and Programming

Solving problems is a pervading and recurrent aspect of programming, which

requires ability to integrate and apply a number of fundamental concepts, cognitive

skills and thinking styles. Developing abilities to solve problems in methodological

fashion is crucial to success in making programs and scholars have been concerned

with this issue for long time [10, 31, 42, 116, 132, 140, 163, 166]. In general,

problem-solving strategies seek to make explicit the intellectual stages involved in

transforming givens into outcomes: understanding the problem, devising a suitable

plan, executing it, and then reviewing the outcome along with the plan (fig. 1.2).

The magnitude of the complexity to create programs can be better

appreciated by regarding the programming lifecycle and a problem-solving strategy

altogether (fig. 1.3).

9

www.manaraa.com

Reading

X
Undorstand - : TI -

/
Plan

Following
•"struciions

Execute -••». -^=: action

\/V
Review

FIGURE 1.2. Polya's Classic Strategy to Solve Problems. Solving problem does

not tend to be a simple and self-evident process. George Polya developed a strategy to

guide students' thinking and facilitate resolution of mathematical problems [132].

Specification .V
Anaftrsif

Review

~ \

Impiementatio

^
r. w a — Vssconcetos,

Maintenance 2007

FIGURE 1.3. Problem-Solving Throughout the Programming Lifecycle. Good

programs result from working through several phases. Similarly, solving problems

methodologically implies following a sequence of stages. However, when tasks

involved are non-obvious, each becomes another problem to be solved. Therefore,

making a program to solve one problem may actually require solving twenty more.

10

www.manaraa.com

1.5.2 Fragility in Problem-Solving Skills

The development of skills to solve problems can be deterred by a number of factors,

such as misconceptions —knowledge or ideas that counteract the actual problem

solving process— or fragile knowledge —concepts the person knows but fails to

apply effectively.

According to Stone [158], many students s tar t college with a level of

information technology skills insufficient for academic success in computer science

courses (p.76). Furthermore, many students undergo programming courses with

deficiencies in elementary abilities to solve problems like reading, arithmetic or logic

[41, 30], consequently increasing the complexity of the course (fig. 1.4.).

Specification

Reading

; >
Analysis -«w

Design

/
Logic

RamUng

/v tofe

OH
mm

Following
instructions

f v Abstraction

*>>, A/

• ^ Arithmetics

Implementation-̂ .

Maintenance
Vasconcelos, 2007

FIGURE 1.4 Factors Affecting Problem-Solving and Programming. The figure

illustrates how reading difficulties can prevent understanding the problem during

the specification phase, flawed logic impacts the design of the algorithm, and

arithmetic errors (like inconsistent use of operators hierarchy) affect the

implementation. It also shows how no plan can be prepared if the problem is not

completely understood first, and similarly, no good review occurs without an

understanding of the whole process.

11

www.manaraa.com

Several educators have described their classroom experiences related to this

situation. For example, Burton [30] pointed out that some of the basic mathematical

skills needed to create programs are not effectively applied (p. 113), among them

familiarity with symbols, variables, relationships, and functional notation. The same

scholar mentioned how an inadequate command of English can cause

misinterpretation of compiling and debugging messages (p. 112). Krishna [101] found

severe difficulties in the understanding of operator precedence and associativity,

both mathematical concepts fundamental to create correct computational

expressions. Lane [106] observed how many students engage in problem-solving

activities without first having a global picture of the task to be accomplished.

Winslow [178] referred to the inability of some students to express a plan in a step-

by-step, program-like form (p. 17), and Pea's description of intentionality errors [127]

can be interpreted as flaws in logical thinking (i.e., instruction outcome is not

directly inferred from the preceding instructions).

In addition, inability to create programs due to fragility to read and perform

systematic analysis was confirmed by a working group of ITiCSE 2004 [110]. This

group performed a study involving college students in several universities in

different countries. Their report recommended the inclusion of special screening

mechanisms in any research project studying problem-solving skills in the context of

computer science education.

12

www.manaraa.com

1.6 Study Description

1.6.1 P r o b l e m o f C o n c e r n

In brief, the observation motivating this study is that many programming students

struggle because of problem-solving factors whose mastery precedes the

programming level, such reading skills, arithmetic and algebraic abilities, or logical

thinking.

The study has evolved through two main phases. For the first phase, we

focused on finding out what concepts and skills students have at the beginning of

such courses, and then we observed their impact in the instruction process in a

constructivist way. We believe that having first some understanding about those

cognitive pre-requisites for computer programming is necessary to address the

problems arising during the courses.

For the second phase, we explored alternative models for surveying the

problem-solving skills required in programming, aiming to detect strengths and

weaknesses, as well as technical aspects of computerized classification testing.

It is worthy of mention that, although it is not clearly stated in the literature,

the notion of surveying tends to imply gathering data or qualitative information,

while assessment tends to refer quantitative evaluation of knowledge or dexterity.

Thus, because the qualitative nature our study, the term "survey" has been

preferred over "evaluation" or "assessment."

13

www.manaraa.com

1.6.2 Initial Research Question

The main research question behind the study has been what prevents students from

being ready for programming courses? However, because of cognitive demands of the

field (see section 1.4), there are too many inquiries to be answered, for example,

what prevents students from (a) understanding computer-programming concepts? (b)

acquiring computer-programming skills? or (c) successfully interacting with

computer-programming environments? A comprehensive approach to the main

research question would require thorough studies on all these three aspects at

several educational levels. However, the scope of our work was limited to the

problem-solving aspects of acquiring programming skills: what elementary problem-

solving factors prevent college students from acquiring computer-programming

skills?

We have approached this problem from several angles: (/) identification of

independent cognitive elements requiered by computer programming, (ii) definition of a

set of capabilities indispensable for successfuly solve problems, (Hi) regard the waterfall

model of program construction as a sequence of problems, each in need to be solved to

finally have a sound program and (iv) identify recurrent issues within the programming

lifecycle, and develop a set of variables that may indicate posibility of failure in specific

parts of the sequence.

1.6.3. The Exploratory Study

The objectives of the first part of the study had been, first, to identify pre

programming knowledge and problem-solving skills that can facilitate or challenge

14

www.manaraa.com

the instruction process, and second, to develop a reliable and systematic mechanism

to recognize them within students' coursework.

To this end, a questionnaire was designed to survey five ability domains

involved in problem solving: (i) reading comprehension, (ii) problem identification,

(Hi) algebraic manipulation, (iv) stepwise planning, and (v) process analysis: tracing

and debugging. Rather than assessing knowledge or dexterity, the questionnaire

was intended to find error patterns and trends that could indicate skill fragility or

potential learning hazards. The analysis performed after the pilot application served

to set an inventory of common pitfalls and propose a taxonomy of cognitive skills and

thinking styles related to programming —intellectual abilities allowing students to

get involved with the programming activity and, consequently, with the instruction

process. The questionnaire elaborated served as foundation to perform the second

part of the study (see Appendix A for details).

1.6.4. The Final Study

To expedite the surveying process, computer-based testing techniques were explored,

which led to a secondary research question: What problem-solving skills can be

effectively identified through objective testing? We explored three venues within this

phase: (i) educational aspects of introductory programming, (ii) identification of

student's ability to solve programming-like problems, (Hi) and the application of

computer based surveying techniques within a constructivist assessment

framework.

15

www.manaraa.com

Chapter 2

Conceptual Framework

2.1 Introduction

This chapter provides a discussion of the theoretical elements upon which the study

is grounded, featuring both the literature review and the conceptual constructs

specific to this study.

Research methods and processes of the study where shaped through action

research and reflective practices, and were grounded in a conceptual and

methodological framework, consisting of: (i) an educational philosophy to guide the

study —a sound bond between constructivist epistemology and computer

programming— (ii) a new model of educational elements involved in introductory

programming, (Hi) an observational tool to perform the study —an instrument

specialized in surveying algorithmic problem solving skills— and (iv) specific

variables to observe while the study was being developed —inventories of common

programming pitfalls, cognitive and practical skills, and thinking styles specifically

related to programming.

16

www.manaraa.com

2.2 Research Tools to Study a Dynamic Topic

Because of the dynamic nature of the study, it required the use of research

approaches designed to evaluate computer science education: action research and

reflective practices to guide understanding through a hermeneutic cycle, adjusting

methods, processes, and premises, as new results were providing a better

understanding of study's object.

2.2.1 Hermeneutics: Search for Understanding

According to the hermeneutic paradigm [7, 44], the understanding of phenomena

follows a cyclic process that starts with preliminary ideas and assumptions, which

are verified, enriched or confronted, by means of practical exploration and literature

reviews (fig. 2.1). In turn, this leads to better insights about the phenomena,

enabling the formulation and testing of new assumptions. Thus, with each iteration

of the cycle, our understanding of the objects evolves, allowing us to adjust methods

and specific processes as needed.

2.2.2 Action Research: Observing while Pract ic ing

Because the study had sought answers to educational problems while the process

was actually taking place, an action research approach was employed. This approach

seeks intentional learning from experience, and promotes exploration and testing of

new ideas, methods, or materials, as well as immediate assessment of their impact

to act accordingly.4

4Action research was introduced by social psychologist Kurt Z. Lewin in the paper "Action Research

and Minority Problems" {Journal of Social Sciences, 1946), describing it as "a comparative research on

17

www.manaraa.com

New understanding

6. New pre-
understanding/

' (Jotistractwt '
programminR

, edncaticp

Adt^tedfrom (Seo, 2005}
by Vasconcelos, 2007

FIGURE 2.1 Hermeneutic Cycle of Understanding (adapted from [144].) In our

study, preliminary assumptions were that programming instruction is affected by

lack of exposure to algorithmic problem solving and individual differences. Critical

incidents occurred after thorough review of the constructivist paradigm and

surveying problem-solving skills, which in turn leads to appreciate how basic

problem-solving skills impact the programming activity at both practical and

cognitive levels.

Action research practices transform the researcher in a "participant-

observer" who studies educational phenomena through the cycle: (i) observation

(data collection), (ii) critical reflection (evaluation), and (Hi) action [71, 159]. Hence,

the research study can be designed in terms of actions to be taken, to later collect,

analyze and interpret data resulting from such actions, and then drawing the

corresponding conclusions [83].

the conditions and effects of various forms of social action, and research leading to social action."

(Online source: http://www.infed.org/thinkers/et-lewin.htm, last accessed: 10/9/2006.)

18

http://www.infed.org/thinkers/et-lewin.htm

www.manaraa.com

2.3 The Constructivist Paradigm

Constructivism is a philosophical system addressing the question "how do we know?"

According to the paradigm, knowledge is constructed rather than imprinted [143,

170, 171], which occurs through a mental process that associates new concepts or

ideas with existing ones [64]. Thus, learning is an individual experience, in which

knowledge is built in a recursive way, i.e. new facts, ideas, beliefs, or skills, are built

up from previous ones [19, 20]. The construction can be conscious, by reflecting on

our experiences, or subconscious, by getting used to some situations.

From an epistemological point of view, according to the constructivist

paradigm, no knowable object can be regarded as "truly real" 5 because, in order to

learn about it, the object has to be transformed into a mental entity able to be

handled by our psyche (and each mental model differs from one person to another.)

As long as the phenomena, explanations or effects, are consistent with our current

model (i.e., they are seen as "natural" to us), we can understand and learn from

them. By the same token, our interaction with the world does not occur directly6, but

through models in our brain that allow us to understand the situation and act

accordingly (namely, the phenomenon "makes sense".)

Models are not duplicates of reality, just ways of explaining and interacting

with it. As long as they serve their purpose, they are regarded as viable. However, if

a cognitive conflict occurs due to new or unexpected situations, the model is

5 From a constructivist standpoint, ontological reality is either irrelevant or rejected [20].
6 In fact, interaction with the world cannot occur in direct way. Because of nature, perception occurs

through a sensory layer that buffers the interpretation and control centers. This phenomenon

transforms the actual world into a perceived world.

19

www.manaraa.com

considered non-viable and requires constructing a new one (if dealing with the new

situation is desired.)

In this way, learning is the process for which mental models are enriched or

created, while teaching is the process that helps or promotes learning. The success of

these processes is contentious to make sense of new facts, or ideas, and incorporate

them into the new model. Thus, because each person has different preliminary

models and association processes, creating a model is an individual experience, and

therefore, that learning actually occurs in different ways with each person.7

According to this perspective, teaching should be adapted to regard different

mental models. Consequently, the teacher is no longer an information source but a

facilitator or motivator [91], someone who promotes (or coaches) the process of

building knowledge. In order to accomplish this, the teacher has to acknowledge that

learning is indeed an individual experience, be concerned about the way each

student learns, and also identify preliminary knowledge the student poses to

prevent new information from colliding with students' mental models, reinforcing

misconceptions, or a failing learning process.

2.4 Educational Elements for Programming

A thorough analysis of available literature, research trends and teaching

experiences led us to develop an operational model of educational elements involved

in introductory programming (fig. 2.2). This model served two purposes: first,

7 In consequence, "learning to program is a unique experience for each student, and is not fully

understood why one person in an introductory programming course learns to program better and more

quickly than the next." Ramaligan, V., et al. "Self-Efficacy and Mental Models in Learning to Program."

ITiCSE'04. p. 171.

20

www.manaraa.com

organize, clarify and set the boundaries of the study, and second, facilitate the

identification of elementary problem-solving abilities that have major impact in the

programming activity or its learning.

Our model is dividing programming education after Wirth's classic work [179]:

(/) instruction in algorithms, and (») instruction in data structures. Currently, the model

only emphasizes the algorithmic branch because, besides being foundation of computer

science and information technologies [22, 130], the thorough development of algorithms

and the application of its characteristics constitutes a sound methodological framework

known as algorithmic thinking [43, 95, 99, 169], from which we elaborated only the

procedural aspects.

FIGURE 2.2. A Model of Educational Elements for Introductory

Programming. The model summarizes the results of the first five stages of the

hermeneutic cycle illustrated in fig. 2.1, applied to our study.

21

www.manaraa.com

The model identifies three factors as necessary for a thorough study of the

programming activity or its teaching: (i) theoretical foundations of education,

(ii) educational aspects specific to program construction, and (Hi) knowledge

domains required by programming. Within the theoretical foundations, an

educational paradigm is needed to shape both, the research study and the teaching

practice. Further more, it helps to understand how learning programming is affected

by prior knowledge, personal experiences, and also by characteristics specific to the

computer machine (see section 2.3). In the other end appear three knowledge

domains that programming students have to learn simultaneously: algorithmic

problem solving, formal language acquisition and interaction with programming

environments [5, 27, 178].

With respect to program construction specifics, the review of a lifecycle model

served to isolate critical points, i.e., specific tasks of the programming activity where

fragile problem-solving skills can become learning hazards (see section 2.5). As

explained in the first chapter, each stage in the lifecycle is in fact a problem the

student has to solve until the actual program is finished. However, because of the

sequential nature of the model, issues at any particular point are carried on through

all subsequent stages, making difficult, even impossible, to create the program.

The model narrows down the boundaries and scope of our study. Figure 2.3

illustrates the point where problem-solving skills and computing pre-conceptions

should be screened in order to differentiate pedagogical techniques properly [178].

22

www.manaraa.com

FIGURE 2.3. Screening Development of Problem-Solving Abilities to Differentiate

Programming Instruction.

2.5 The 'Waterfal l" Lifecycle Revisited

The disciplines of systems engineering and software engineering have shown that

(sound) computer programs result from working through several phases known as

lifecycle models [73, 134, 160]. Such models help organize complexity when

elaborating products that must meet multiple requirements, as well as monitor

effectiveness of the different tasks involved in such process. In our study, a

programming lifecycle helped to analyze this activity from a problem-solving

perspective and identify critical points where common learning hazards occur.

For simplicity, we revisited the traditional waterfall model of program construction8

[24, 134, 167), however, the analysis also applies to the spiral model of programming

[134].

Although the waterfall model now belongs to the common knowledge of the computing field, it tends to

present modifications depending on particular textbooks or instructors. Some interesting variations

appear in [63, 165]. A discussion regarding its current applicability appears in [38],

23

www.manaraa.com

Specification - ^ Requirements

Analysis ^Data, formulas,
^\resources

Design -^Algorithm

Maintenance

FIGURE 2.4. The Waterfall Model for the Lifecycle of Programming. The

simplest approach to elaborate programs is the "waterfall model" [167]. Programming

is depicted a sequence of "black boxes" where the output of each box becomes the

input of the next one.

Specification « y - v .
^^Requirements

Analysis Data, formulas,
resources

Polishing
requirements

cycle

X—^ : % '
Design

It
Design
/ adjustment

Alg8hihm /.^ cy°le

Implementation
Program

Development
Cycle: testing

& debugging

Maintenance

Review cycle: ——"~~
Analysis, debugging & testing

Vasconcelos, 2007

FIGURE 2.5. The Waterfall Model of Programming with Refinement Cycles.

Depending on the complexity of the requirements, the "waterfall model" can become

iterated. Some students become stuck in the cycles, without further progress in the

program under construction.
24

www.manaraa.com

This classic model (fig. 2.4) describes the making of a program as a result of

following a sequence of stages, each producing a prescriptive document to guide

activities in the next phase [2, 18, 24, 46, 58, 167]. In principle, success at any given

point is dependent upon (successful) completion of the previous stages; consequently,

succeeding in all phases of the lifecycle leads to a working program (if not an

efficient one, at least one that meets the requirements).

The waterfall model works well to elaborate programs with few

requirements. However, as their number increases, elaborating the program

demands the programmer to move back and forth in between stages (fig. 2.5).

Because the tasks involved in each stage are not self-evident, every stage

becomes a problem by itself. Therefore, besides the one for which the program was

required, the student has to solve, at least, six more problems. Due to the sequential

nature of the model, any issue occurring at some particular point is carried on

throughout subsequent stages,9 a "snowball effect" with serious repercussions for

programming education: fragile problem-solving skills increase the complexity

inherent to each stage of the lifecycle [106], which can prevent the completion of the

program, understanding how to make it, or how it works.

Teaching experiences have shown that recovery is not always impossible, however process tends to be

difficult and unclear.

25

www.manaraa.com

FIGURE 2.6. Relationship among the McCracken and Polya Models, and the

Stages of a Programming Lifecycle.

Figure 2.6 uses Venn-diagrams to illustrate the relationship among Polya's

problem-solving strategy, the problem-solving process described in the McCracken

study (section 1.3), and the stages of the programming lifecycle10. Thorough analysis

of teaching and research experiences regarding these models serve to pinpoint

recurrent issues challenging introductory programming instruction (see table 2.1).

For example, difficulties in abstracting a problem out of the description, as

noticed in the McCracken study [117], can be traced to language deficiencies [27] or

plain "shyness to ask questions" [10, 12]; while the inability to elaborate a program

that implements a sound algorithm can be due to a seemingly obscure programming

language [26, 125], to an "unfriendly" programming environment [67, 126, 181], or to

issues reading and interpreting error messages issued by the compiler [27, 104].

10 A study performed by Deek [50, 51] presents an analysis of a common model of problem solving and

the tasks of program development. Because of their similarities, the study merges them as a "dual

common model for problem solving and program development."

26

www.manaraa.com

Phase

1

Specification

(Stating the
problem)

2

Analysis

(Reviewing

problem's

context)

3

Design

(Planning an

algorithm)

4

Implementation

(Programming or

pseudocoding)

Challenges

1. Issues reading, or understanding, the problem statement

[27, 41, 106, 178].

2. Difficulty to extract or summarize information from context

[72, 117].

3. Inability to request either clarification or more information

("shyness to ask questions") [11, 12].

1. Inability to request clarification or get more information.

2. Inability to break a problem down into simpler units [41,

75].

3. Lack of knowledge, or intuition, regarding theory involved

in the problem to be solved [136, 178].

4. Difficulties to discern between useful and not useful

information [178].

1. Problems devising a suitable strategy [41, 106, 117, 153].

2. Difficulty to express thoughts [76].

3. Confusion with algorithm characteristics.

4. Assumption that computing agent has preliminary

knowledge of the solution process [127, 155].

1. Difficulties grasping the computer language [26, 121, 125,

104, 155].

2. Difficulty to express a plan using a computer language.

[117, 155, 178].

3. Unsuccessful interaction with the compiler or the

programming environment [67, 89, 126, 181].

4. Misconceptions on computer language semantics [13, 78].

TABLE 2.1. Common Challenges to Elaborate Programs.

27

www.manaraa.com

Phase

4

Implementation

(Testing or

debugging)

5

Maintenance

(Updating,

improving,

debugging)

6

Documentation

(Preparing

material for future

understanding

of the program)

Challenges

1. Lack of intuition, or ability, to predict results from a

specific algorithm [8, 80].

2. Lack of ability, or interest, to verify the logic behind an

algorithm and its results [40].

3. Missing common errors (initialization, arithmetic

expressions, loops, etc.) and checkpoints [20].

4. Inability to hand-trace [66, 110] or difficulty to follow step-

by-step procedures [36].

1. Issues reading programs or understanding work done by

other people [52, 61, 103, 110, 138, 178].

2. Difficulty to extract, or summarize, information from an

algorithm [106, 110].

3. Inability to request clarification or more information.

4. Lack of knowledge, or intuition, regarding theory involved

[178].

1. Issues writing or understanding the writing process

[14, 61, 110].

2. Difficulties to extract, summarize, or explain information

from work that has already been done [52, 110].

3. Inability to request clarification regarding documentation

style.

4. Problems making document outlines.

5. Difficulties to express thoughts in written form.

6. Misconceptions regarding English, computer language or

algorithmic language.

7. Lack of intuition or ability to explain what it is expected

from an algorithm [110].

8. Lack of ability, or interest, to explain the logic behind the

algorithm (i.e., how the program works) [153].

TABLE 2.1. Common Problems to Elaborate Programs (cont.)

28

www.manaraa.com

2.6 Research in Computer Science Education

Broadly speaking, scholars involved in computer programming education are trying

to answer one of the following questions: (i) How to teach computer programming?

(ii) How to facilitate instruction in computer programming? and (Hi) Why

programming is difficult to teach and learn? Hence, common research goals can be

perceived, such as the identification of technical and cognitive abilities to succeed in

programming courses, how to help students to better understand the way

information technologies work, and provide teachers with tools to recognize and

facilitate development of students' conceptions and skills.

2.6.1 Overview

The attempts to facilitate learning to program have moved from creating new

languages to designing a diversity of programming environments [56]: Kemeny and

Kurtz' BASIC (1964), Papert's Logo (1967), Wirth's Pascal (1970), Pattis' Karel the

Robot (1981), Pausch's Alice (1995).

Also, a number of studies have been performed on the psychology of computer

programming [112, 113, 114, 115, 146, 153, 173]. The impact of those works seems to

have been limited, in part because they are not well known, or were done more than

two decades ago. Nevertheless, many conclusions are still valid and can shed some

light to understand current experiences, or serve as starting point to analyze current

practices.

Contemporary research tends to fall within five main groups: computer

interaction [32, 33, 56, 79, 126], computer languages [78, 125], intelligent tutoring

[57, 106, 131, 180], lab-augmented class [27], and computing mental models
29

www.manaraa.com

[13, 21, 150]. Recently, special education has also started to be studied [60]. Several

large-scale studies, spanning several institutions, have started to emerge [65, 110,

117], as well as some comprehensive literature compilations [65, 79, 93].

2.6.2. Programming and Problem Solving

Scholars have attributed the challenges in programming education to a number of

causes, ranging from insufficient exposure to algorithmic problem-solving, to

semantic conflicts with programming languages, and even motivational issues. The

studies performed by Mayer [115], Soloway [153], and Ala-Mutka [5] have done

comprehensive reviews on several problems of learning and teaching programming,

while Winslow [178] presents a psychological overview of programming, containing

insightful aspects regarding the pedagogy of problem solving. Table 2.2 sumarizes

several programming issues related to problem-solving and their possible origins.

2.7 P r o b l e m Solv ing

2.7.1 Capabilities for programming

Like many scholar courses, programming ones seek to hone a number of cognitive

abilities into particular skills. Those abilities need to be present by the time the

course starts (they are hardly acquired or developed during the course), otherwise

objectives are hardly met and students are likely to fail.

30

www.manaraa.com

Problem

Poor problem-
solving skills.

Misconceptions
about programming
and computing.

Conflicts with
programming
languages.

Conflicts with
programming tools.

Psychological or
socio-cultural
factors.

Possible origin

Lack of exposure to algorithmic thinking [30, 41].

Early introduction to programming language [115].

Inability to start/overwhelmed by problem [6, 10, 86].

Inability to plan [5, p.4].

Inability to integrate individual steps/instructions [78].

Inability to decompose a whole into constituent parts [75].

Inability to follow step-by-step procedures [34, 36].

Insufficient time [30, 117].

Defficient pre-requisites (mathematics, English, information
technology, etc.) [30,158].

Errors due to misconceptions [127].

Concepts not matching techniques [5, p.4].

Alternative concepts for correctness [97].

Inadequate computer mental model [13, 19, 20, 21].

Learning curve to match program with the mechanism it [59].

Defficiencies in computer literacy [30].

Semantic or syntax [4, 6, 40, 67, 78, 115, 119, 125, 135, 153, 155].

Semantic differences with respect to ordinary speech [5, p.3; 19,
p.51; 23; 26].

Language complicates algorithmic solution

Programming paradigm [5, 30].

Programming systems not designed for usability [56, 73, 125, 181].

Confusing syntax errors [104].

Adversity [82, 118, 133].

Overconfidence [5, p.2].

Student's behavior [128].

Motivational issues [6, 45, 90, 91].

TABLE 2.2. Summary of Factors Affecting Programming Education.

In the case of introduction to programming, we have been distinguished five

big groups, or domains, of problem-solving capabilities (fig.2.7):

1. Problem comprehension: During the course, the student needs to read

and understand many problem statements (also process descriptions), and

get essential information out of the problem context. Related to this

31

www.manaraa.com

ability, is the one to write down information gotten from that context. A

discussion on the importance of reading and related issues appears in [14,

30, 52, 103, 141]. A discussion on issues about problem identification

appears in [10, 12, 25, 107, 108, 137, 141].

2. Functional decomposition: Regardless of programming paradigm, the

student requires the ability to see "the big picture" that any problem

represents, and methodologically decompose it into sub-problems. Then,

figure out a plan of attack for each one. Some references to this ability

appear in [41, 75, 117].

3. Numeric and symbolic manipulation: Because many programming

solutions are based on the propper mixing of computations, the student

needs basic skills on algebraic manipulations. A discussion on the

importance of basic mathematic skills appears in [15, 30, 41, 101].

4. Stepwise planning. This category refers to student's ability to describe

simple tasks in a step-by-step way, with thorough application of causal

logic. The questioning can reveal levels of detail or abstraction, issues in

thought expression, and misconceptions on algorithms. Some references

to this ability appear in [128, 139, 174],

5. Process analysis: The student requires the ability to analyze and see the

details behind an algorithmic process, in order to mechanically trace and

debug programs. A discussion on the importance of interpreting algorithms

and related issues appears in [13, 110, 127]. A discussion about hand-tracing

appears in [8, 52, 80, 103, 110].

32

www.manaraa.com

The cognitive origins of these capabilities have many different sources and

develop through long periods. However, possessing this knowledge does not guarantee

success in a particular course, but its absence seems to be usually a prelude for failing. It

can be seen some relationship between deficiencies in the domains of the model and the

problems listed in table 2.1.

1. Reading comprehension: Programmers need to read and understand

many problem statements, requirements' specifications, and process

descriptions. Related to this ability, is the one to write down information

gotten from that context.

2. Problem identification (abstraction): Programmers need to get essential

information out of the problem context, and express it in the form of input,

output, resources, and unknowns.

3. Algebraic manipulation: Programmers have to be skillful on basic

algebraic manipulations because many programming solutions are based on

the propper mixing of computations.

4. Stepwise planning: Regardless of the programming paradigm, the

programmer requires to see the big picture of any problem represents, and

methodologically decompose it into sub-problems; then figure out a plan of

attack to solve each one.

5. Process analysis: The student requires the ability to analyze and see the

details behind an algorithmic process, in order to mechanically trace and

debug programs.

FIGURE 2.7. Model of Five Ability Domains (5-AD) for Algorithmic Problem Solving.

33

www.manaraa.com

Chapter 3

Surveying Problem-Solving Ability

3.1 Introduction

As described in the previous chapters, fragile development of problem-solving skills

is one of the main factors contributing to the struggle of programming students.

Praxis has shown and the Lister-Fitzgerald team [110] has also recommended, that

a problem-solving screening mechanism is needed to either perform specific studies

on programming and problem solving, or to ponder its developmental level before

they impact the teaching and learning process.

However, mechanisms adequate to the instructional needs of our field have

apparently not yet been developed. As stated in the previous chapter, the

instruments currently available do not address the areas or instances involved in

computer programming, or do not provided the kind of information educators require

to better understand and help their students.

This chapter discusses the design and implementation of an algorithmic

problem-solving test that has mainly evolved from our work in the classroom.

34

www.manaraa.com

3.2 Main Concerns on Assessing Problem Solving

The need for better assessment instruments and procedures in programming courses

has motivated several studies [47, 48, 69, 117]. With respect to the problem-solving

aspect of programming, the design of assessment instruments offers two major

challenges.

First, assessing computing requires different types of questions to test basic

information, analysis, and problem solving [180]. In the latter case, testing problem

solving is difficult because of the skill subsets involved and their developmental

nature, which tends to demand long questionnaires. This is particularly noticeable

when multiple-choice questions are used because applicants are unable to show their

thought processes behind particular answers [70, 85] . u

Second, traditional testing models just report numerical estimates of

applicant's level of dexterity on the knowledge or skill under testing [172], which

does not reflect the intellectual capabilities or abilities involved. Information hidden

in errors is disregarded, providing, therefore, very limited feedback about areas

requiring improvement.

With exception of Fone's works [68, 69, 70], our literature review found no

adequate model for qualitative assessment of problem solving. Fone has explored the

possibility of developing automated assessment instruments that preserve

advantages of traditional ones.

11 According to Fone [70], factual knowledge (concepts) has static domains that can be

acceptably represented when sampled by a small number of questions. Procedural knowledge

(skills and application of concepts) has dynamic domains that are misrepresented if sampled

with few questions.

35

www.manaraa.com

3.3 The Study's First Phase

3.3.1 A Prel iminary Survey

Aiming to survey problem-solving abilities of students starting introductory

programming, Vasconcelos and Houlahan [168] developed a questionnaire with

problems and questions drawn from the programming lifecycle and the problem-

solving process (see table 3.1). The questionnaire items were either selective-

response (multiple-choice), to quickly appreciate student's skills, or constructed-

response (open answer), aiming to elucidate student's thought processes and

concept understanding.

This paper-based questionnaire consisted of eleven problems, similar to

common coursework exercises, and ten questions on programming and algorithm

fundamentals; and it is described to detail in Appendix A.

Component

1. Problem understanding

2. Problem analysis

3. Solution design

4. Solution review

Question Types

• Reading comprehension

• Problem identification.

• Summarizing information from statement.

• Modeling situation and/or relations.

• Functional decomposition of problems.

• Perform structured planning.

• Basic arithmetic.

• Solve algebra word problems.

• Interpretation of procedures.

• Tracing and debugging pseudocode.

TABLE 3.1. Components of the Preliminary Survey.

36

www.manaraa.com

3.3.2 Characterist ics of the Pilot Application

• Demographics

The questionnaire was piloted by surveying 150 college students new to computer

programming, 135 from "CS109: Introduction to programming" (September 2003)

and 15 form "CS106: Algorithmic thinking" (January, 2004.) Because the diversity of

the groups, attributes such as gender, ethnic or cultural backgrounds, or native

language, were regarded as irrelevant.

• Analysis of Results

After the application of the instrument, a random sample of 20 questionnaires was

analyzed, following a constructivist approach, i.e., trying to elucidate how the

answer was constructed. Thus, besides knowledge or dexterity, we looked for error

patterns and potential relations between different answers that could indicate skill

fragility.

• Feedback and Observation

In addition to the survey, data was obtained from class observation and interviews.

Such information served two purposes, first, get a deeper understanding of the

information gathered with the survey, and second, obtain concrete opinions to

improve the questionnaire.

37

www.manaraa.com

3.4 Guidelines for Surveying Problem Solving

Besides the information originally expected, each answer in the survey provided

important elements for future screening of problem-solving ability, and led to revisit

assumptions behind the original survey. This exercise also served to pinpoint

specific abilities requiring further attention and set the foundation for the second

phase of our study.

3.4.1 Inventory of Common Pitfalls

The analysis of our first questionnaire revealed several problem-solving issues that

can easily contribute to making programming instruction difficult. Examples include

omitting or switching instructions, committing trivial arithmetic errors, neglecting

quantifiers, failing to use algebraic relationships, or relying on unfounded

assumptions. Such pitfalls were organized according to their occurrence within the

5-Ability Domain model and collected in an inventory (Table 3.2.)

It is worthy of mention that most items in our pitfall inventory correspond to

problem-solving issues reported by several scholars (as discussed in Chapter 2,

subsection 2.7.1), and related to several programming difficulties reported by

Lahtien [105].

3.4.2 Categories of Quest ions

Our experience has confirmed that future surveys should be organized after the five-

ability domain model involved in algorithmic problem-solving: (i) reading

comprehension, (ii) problem abstraction, (Hi) algebraic manipulation, (iv) stepwise

planning, and (v) process analysis: tracing and debugging.

38

www.manaraa.com

Ability Domain

I

Reading

comprehens ion

II

Problem

identif ication

III

Algebraic

manipulat ion

Most Common Issues Detected

• Quantifiers: quantifier in the answer does not

correspond to the one used or implied in the text.

• Inference: claim cannot be inferred from the text.

• External information: answer includes information not

provided by the text.

• Context: meaning attributed to a given word does not

correspond to text's context.

t Details: omission of important details.

• Short rewritten: Student write up does not summarize

the text.

• Keywords: Omission of most important words in the

text.

• Missing information: (a) the student did not detect that

important information was not provided within the

problem statement, (b) the student did not detect

important information provided within the problem

statement.

• Resources: input data was not identified.

• Results: output data was not identified.

• Input vs. output: potential confusion between resources

and outcomes.

• Generalizations: failure to relate word problem, or

concrete values, with generalized statement or algebraic

relation.

• Wording: problem wording confused student.

• Hierarchy: algebraic hierarchy of operations was not

applied correctly.

• Computation: trivial arithmetic error.

• Steps out of order: Steps were not followed correctly in

a broken-down formula.

TABLE 3.2. Inventory of Common Pitfalls in Algorithmic Problem Solving.

39

www.manaraa.com

Ability Domain

IV

Planning

V

Process

analysis

Most Common Issues Detected

• Steps out of order: Steps stated do not follow correct

order.

• Redundancy: several steps performing the same action.

• Oversimplification: Problem not broken down into sub-

problems.

• Logic: (a) Causality not evident within steps provided,

(b) failure to construct valid logic expressions.

• Abstractions: Failure to handle abstractions properly.

• Loops: (a) infinite loop, (b) incorrect number of

iterations, (c) inability to express iterative procedures.

• A s s u m p t i o n s : answer relays on invalid assumptions.

• Logic: (a) Failure to observe causality between

instructions, (b) failure to evaluate logic expressions.

• Failed Instruction: instruction misinterpreted or

omitted.

• Wording: answer shows instruction wording confused

student.

• Algorithm elements: assignments, operations or

initializations.

• States: variable was not updated when instruction

changed.

• Loops: (a) infinite loop not detected, (b) incorrect number

of iterations not detected, (c) confusion with the words

while or repeat.

• Assumptions: answer relays on invalid assumptions

TABLE 3.2. Inventory of Common Pitfalls in Algorithmic Problem Solving (cont.)

40

www.manaraa.com

1. Reading comprehension. This category tests applicant's to objectively

read texts, algebra word-problems, and instructions, by solving several

questions without applying information not provided in the passage.

Then, to verify if the reading was understood, the applicant's has to select

a short passage, with different vocabulary, best describing the main one.

2. Problem identification. Questions within this category test applicant's

ability to identify issues occurring within a given situation, abstract

important data, organize information and summarize it within a problem

statement. Also, it tests generalization of rules, usually expressed in the

form of algebraic relations.

3. Algebraic manipulation. The questions within this category test the

applicant's ability to perform simple arithmetic operations, either directly

or in algebraic representation, the foreseen algorithm output, and to

interpret word problems.

4. Stepwise planning. This category seeks to elucidate applicant's ability

to describe simple tasks in algorithmic way —application of causal logic.

The questioning can reveal levels of detail or abstraction, issues in

thought expression, and misconceptions about algorithms.

5. Process analysis. This section tests the applicant's ability to work with

sequences of simple instructions: reading algorithmic language,

understanding the purpose of instructions, mechanical interpretation or

hand-tracing, and proper utilization of algorithm properties. The

questioning helps to elucidate consistency in application of logic,

misconceptions in algorithms, and inadequate assumptions.

41

www.manaraa.com

3.4.3 Interpretation of Answers

The first phase of our study showed the feasibility of analyzing questions with a

constructivist approach, i.e., trying to elucidate how answers were constructed.

Thus, rather than assessing knowledge or dexterity, we should look for clues that

could indicate potential strengths or weaknesses to learn programming. The

following sections shows and explains some examples of this approach.

• R e v e r s e A l g e b r a W o r d P r o b l e m

We call a "reverse algebra word problem" a word problem that moves from a given

solution, or solution procedure, towards the problem that generated it. To solve this

kind of problem, the student has to understand the sequence of operations stated

and mentally map them onto one of the situations proposed.

Figure 3.1 uses a reverse algebra word problem to illustrate how even a small

selective-response problem can provide a wealth of information. In this particular

case, each answer is suitable, with just a subtle difference on its wording.

What would this sequence of instructions accomplish?

Step 1: Divide 100 by 24.

Step 2: Round that answer up to the next larger whole number.

a) Calculates how many gallons of gas are used to go 100 miles.

b) Calculates how many vehicles are needed to transport 100 people

if every vehicle carries 24 people.

c) Calculates how many boxes will be completely filled with apples

if 100 apples are to be put in 24 boxes.

d) All of the above.

FIGURE 3.1. A "Reverse Algebra Word Problem" with Partially Correct Options.

42

www.manaraa.com

Let's review the problem carefully. If the instructions are followed correctly,

the result is 5. At first glance, every option can seem valid, and thus, the best

answer would be "d) all of the above." However, thorough reading reveals interesting

details. For option (a), gas consumption is usually given without rounding —4.17

gallons were used in 100 miles. In the case of (b), five vehicles would be needed, four

of them would be filled while the fifth one would carry just one student. In the case

of the apples, option (c), the statement asks for the number of boxes with exactly 24

apples, which is four.

Thus, the only option strictly correct is (b), five buses. Nevertheless, any

option provides information about applicants skills, from lucky guess to partial

understanding, or deficient reading. The last option, "all of the above," might

indicate either superficial reading or lack of understanding of the details involved in

each option. The first option could be attributed to neglecting the rounding step,

while the third one might indicate that attention was not paid to the key phrase

"completely filled."

This "apparently obsessive" attention to details is a recurrent need within the

programming activity: to ensure a running program, to detect minor errors in

results, to troubleshot compiler errors, etc. [99].

• Reading Comprehension

Traditional reading comprehension tests can provide valuable insights on the

reading ability required to create programs.

As discussed in Chapter 2, good programs result from fulfilling the

specifications of requirements, usually a written document that has to be carefully

43

www.manaraa.com

read and understood. The information appearing that document usually contains

subtle details important to elaborate the product, as well as background data that

could be not useful at all, and the programmer has to be careful to discern between

both types. Figure 3.2 shows a reading that appears as project's prologue in a

programming textbook,12 and some of the options provided in the actual survey.

Instruction: Read this passage very carefully and mark as true (T) of false (F) the

statements below. Select the answer that best matches the information given in

the passage.

Prime numbers fascinate and frustrate everyone who studies them. Their

definition is so simple and obvious; it is so easy to find a new one; multiplicative

decomposition is such a natural operation. Why, then, do primes resist attempts

to order and regulate them strongly? Do they have no order at all or are we too

blind to see it? There is, of course, some order hidden in the primes. The Sieve of

Eratosthenes shakes the primes out of the integers. First 2 is a prime. Now knock

out every higher even integer (which must all be divisible by 2). The next higher

surviving integer, 3, must also be prime. Knock out all its multiples, and 5

survives. Knock out the multiples of 5, and 7 remains. Keep on this way and each

integer that falls through the sieve is a prime. This orderly if slow procedure will

find every prime. Furthermore, as n goes to infinity, we know that the ratio of

primes to non-primes among the first n integers approaches (loge n) /n.

Unfortunately, the limit is only statistical and does not actually help in finding

primes. [Wetherell's Etudes]

a) The sieve takes advantage of Euclid's technique.

b) By using the sieve, all the resulting output are even numbers.

c) The passage describes the meaning of the prime numbers.

d) By using the sieve, the resulting output values are primes

e) The passage describes the technique to find all the prime numbers.

f) The passage describes one technique to find all the prime numbers.

FIGURE 3.2. Example of a "Reading Comprehension" Problem.

12 Wetherell, C. Etudes for Programmers. Prentice Hall, 1978.
44

www.manaraa.com

From the example, we can see that options (a) and (d) are checkpoints to

observe whether the applicant has been attentive to both reading and answers.

Option (b) serves to confirm if the distinction between odd and even numbers is

known, and also if the text was interpreted correctly (i.e., the claim was stated in

plural, but the technique only detects one even number, 2.) The meaning of prime

numbers, option (c), cannot be inferred from the reading, and the difference between

the last two statements is the quantifier (i.e., Eratosthenes' sieve is not the only way

to find primes.)

Such level of detail while reading is very important throughout the whole

programming lifecycle. Unfortunately, reading without sufficient attention is a

recurrent issue pointed by specialists in problem-solving process, and always the

first remark in problem-solving books and chapters.

• Instruct ion Execut ion and General ization

The example shown in figure 3.3 states a sequence of arithmetic actions the

applicant should perform in order to provide an answer (no options were provided).

What is the result of following these instructions?

Step 1: Think of a number, but keep it silently in your mind. x

Step 2: Take your number and multiply it by 2. 2x

Step 3: Add 8 to the previous result. 2x+8

Step 4: Take the result in step 3 and subtract the number 2x+8-x

you started with.

Step 5: What is the answer you got? x+8

What is your answer?

FIGURE 3.3. A "Following Procedure" Problem with Symbolic Solution.

45

www.manaraa.com

As it can be seen, the actions on each step are quite simple, they even might

resemble some mathematical tricks that start with a number, request to perform

some operations and lead to an specific value. However, in this exercise, the

procedure does not ends with a concrete value. If the steps are followed correctly, in

algebraic way, the answer should be a symbolic expresion, x + 8.

This kind of question can reveal if the student tends to think in concrete way,

if the answer provided is a number, or in abstract way, if the answer provided is an

algebraic expression. If no answer is provided, the applicant might have no idea of

how to proceed, or be fearful of attemting any solution. In any case, this information

can help the instructional process. For example, a student who provides an

algebraic answer can be ready to deal with variables and generalized procedures,

while a student who writes a number might require several concrete examples on

variables before moving to generalized procedures.

In similar fashion, an answer omitted might indicate need for coaching: if the

student runs into difficulties whenever making programs, special motivation could

be required to prevent the learning process from stalling.

3.5 A u t o m a t e d S u r v e y i n g

3.5.1 Paper-Based Lessons

The experience gained through our preliminary survey served to highlight that, even

with selective-response questions, the students' answers could provide many

insights on the problem-solving skills we were trying to screen. Furthermore, we

could notice how some students' backgrounds or preconceptions are able to influence

46

www.manaraa.com

(positively or negatively) the viability of some questions by triggering an attitude

towards them, such as overconfidence, fear, or just the opposite. Some examples: a

student already acquainted with Eratosthenes' sieve (fig. 3.2) can be less attentive to

the reading, resulting in wrong answers; someone who had bad experiences with

prime numbers might prefer to skip the question, and a good algebra problem-solver

can get the correct answers easily without giving much thought to the problem-

solving process.

To minimize the repercussion of such a predisposition, the questionnaire

would require different questions for each category assessed, resulting in a longer

questionnaire, or in different questionnaires according to each student needs. Also

importantly, analyzing each questionnaire individually proved to be a very tedious

and time-consuming process. If such instrument were intended for periodic

application, results would hardly be on time to help students or preparing courses.

3.5.2 Key Features for a New Survey

This section outlines the main characteristics we considered in developing our new

survey. They were intended to address the issues previously mentioned, while

increasing the efficiency of the surveying task.

1. Use of automated-testing tools for increased efficiency of data gathering

and returning.

2. Enable the survey to be online to allow easy, wide access, and reduce the

need of specific software tools and platform dependency.

3. Develop a flexible architecture to allow easy upgrades and improvements

of the survey.

47

www.manaraa.com

4. Follow a progressive, experiential development (based on our class

observations and peer advice) that will serve as foundation of next

improvement iteration.

3.5.3 From Paper-Based to Web-Based

The first step in developing the online survey was to migrate the questionnaire from

its paper-based format into a web-based equivalent. This was a two-folded task: (i)

elaborate a front-end to display questions and get user's input, and (ii) implement a

back-end monitor to verify answers and select new questions to be displayed.

The eleven original questions were transformed into HTML forms, one

question per webpage, but taking care of preserving the respective answer style

(selective or constructed response.) Additionally, a simple PHP test engine was

implemented to verify correct selection of the question sequence and to check

reliability of the data recorded (fig. 3.4).

48

www.manaraa.com

Test engine

X
^

Question
manager

Q i es ttoi
* elector

Hard copy
maiager

Get
Q lestloi q<estto»

Question
bank)

^ S
Answer
handler

ctj
Ve rhV

cor recti ess

validate
i p i t

Flags
update

Update
xvpncanrs

record

(/applicant's \
record j

FIGURE 3.4 Main Functional Components of TAPSS 2.0 Testing Engine. The

question manager, in charge of getting test items out of a question bank, works in

conjunction with the answer handler, which gets user input for each question and

scores it.

3.5.4 A d a p t i n g Q u e s t i o n T y p e s

The structure of the original constructed-response questions required modification to

fit the constraints imposed by the multiple-choice format the online survey would

present.

1. Questions originally stated as selective-response remained the same.

2. Questions originally stated as constructed-response were transformed

into multiple-choice by using as options answers provided by students

during the application of the original application.

3. Questions on process analysis and debugging (fig. 3.5a) have a somewhat

49

www.manaraa.com

open nature: the issue has to be explained, although the error can be just

marked down. Thus, these questions where split in two more: one asking

to indicate what errors were found (fig. 3.5b), and another requesting to

mark the faulty line, with possibility to add a brief explanation (fig. 3.5c.)

The following instructions were meant to display the decimal values

of the sequence 1/1,1/2, 1/3, 1/4,

Set num to 0

While num < 5

Compute dec =

Display dec

Add 1 to num

End While

1/5, however

1 / num

it does not work correctly.

FIGURE 3.5a Example of a Debugging Problem.

What kind of problem(s) did you find?

a) Division by zero.

b) No result displayed.

c) No data input.

d) Never ending loop.

e) Never starting loop.

f) Incorrect number of iterations.

g) Wrong initialization.

FIGURE 3.5b Possible Bugs in the Algorithm of Figure 3.5a.

Mark and correct any faulty instruction

a) Set num to 0

b) While num < 5

c) C o m p u t e dec =11 n u m

d) Display dec

e) Add 1 to num

f) End While

FIGURE 3.5c Algorithm with Options to Mark Errors and Write Corrections.

50

www.manaraa.com

4. Problems on planning are creative in nature and cannot be effectively

tested with multiple-choice questions. Thus, we decided to present several

stepwise answers to the problem (figure 3.6). The difference between

options is interchanged steps or different solutions.

Make a stepwise procedure to compute the following sequence up to six

terms: 1, 4, 27, 256, 3125, ?

Procedure 1

1. Let a be the first natural number

2. Multiply a, a times.

3. Let b be the result of the previous step.

4. Increase a to the next natural number

5. Repeat steps (2) to (4) five more times.

Procedure 2

1. Let a be the first natural number

2. Let b the result of multiplying a, a times.

3. Write down b

4. Increase a to the next natural number

5. Repeat steps (2) to (4) five more times.

Procedure 3

1. Let a be the first natural number

2. Let b the result of multiplying a, a times.

3. Write down b

4. Increase a to the next natural number

5. Repeat steps (2) to (4) four more times.

FIGURE 3.6 Example of a Multiple-Choice Question on Planning.

51

www.manaraa.com

3.5.5 Skill Tracking Variables

The test engine (fig. 3.4) was designed to monitor several values: answer correctness,

pitfall occurrence, and skill performance. Tracking variables were drawn from two

main sources: the pitfall inventory (table 3.1) and an expanded version of our ability

domain model (table 3.3.)

Each pitfall and sub-domain corresponds to specific variables (counters) that

were weighted after user answers. Sub-domain counters are updated according

directly to answer's correctness while pitfall variables are updated only with

incorrect answers (otherwise the pitfall did not occur).

For example, a correct response on the question of figure 3.3's would indicate

abilities to (i) read and follow instructions, (ii) identify a problem out of a sequence

of instructions, (Hi) correct use of variables and algebraic expressions, and (iv) no

pitfall committed. On the contrary, a mistake answering figure 3.7's question would

automatically update the computation pitfall. However, because lack of attention

might not be the only cause of the error, so, sub-domain variables on reading and

algebra word problems are also updated negatively.

52

www.manaraa.com

Ability domain

I

Reading

Comprehension

II

Problem

Identif ication

III

Arithmetic

& Logic

IV

Planning

V

Process

Analysis

Code

[11]

[12]

[13]

[14]

[15]

[21]

[22]

[23]

[25]

[27]

[31]

[32]

[33]

[36]

[37]

[38]

[40]

[43]

[44]

[45]

[47]

[52]

[53]

[54]

[55]

[57]

[59]

[60]

Sub-domain
Problem Statement.

Algebra word problems.

Procedures in narrative style.

Procedures in stepwise form.

Pseudocode.

Problem statement.

Problem context.

Algebra word problem.

Instruction sequence.

Problem type.

Algebra word problem.

Evaluation of arithmetic expression.

Operators hierarchy and laws.

Iterative operations.

Variables as abstraction.

Boolean expressions.

Conditions.

State the sequence of a set of instructions.

Elaborate a solution and compare with others.

Identify problem type.

Assignment and expression evaluation.

Following instructions.

Hand-tracing.

Prediction of results.

Debugging.

Interpreting instructions in different formats.

Variable as memory cell.

Array as entity.

TABLE 3.3. Inventory of Sub-Domains of Algorithmic Problem-Solving Ability

and Skill Tracking Codes. These sub-domains where obtained by observing how

each ability domain is involved in different aspects of the problem solving process.

53

www.manaraa.com

Your younger brother is planning a sleepover with 4 friends. Your mother told him to

buy 2 hot dogs, 3 candy bars and something to read, for himself and each guest. He

also needs some soda, and knows that 1 liter of soda is enough for 3 kids. How much

food will he buy at the store?

a) 2 Hotdogs, 3 candies, 1 soda, 5 Comics.

b) 10 Hotdogs, 15 candies, 2 sodas, 5 Comics.

c) 10 Hotdogs, 15 candies, 1 soda, 6 Comics.

d) 12 Hotdogs, 18 candies, 2 sodas, 5 Comics.

FIGURE 3.7. Example of an Algebra Word Problem.

3.5.6 Q u e s t i o n C a l i b r a t i o n

All the items in the questionnaire were calibrated (reviewed and adjusted) according

to these three factors: the 5-ability domain model and its sub-domains, multiple

valid answers, and oversampling.

First, we ensured that each question belonged to a specific category within

our model, and that all the options were properly aligned to pitfalls and sub-

domains. (See example on subsection 3.5.5.)13

Second, despite traditional guidelines for multiple-choice question design -

only one correct option in the answer set [35, 84], we implemented questions with

multiple valid answers (see figure 3.1) aiming to recognize partial understanding

and developmental levels of ability. (According to their webpage, the profiling

company Skillprofiller successfully uses this technique [148].)

Third, oversampling, a technique also used by Fone [70] to improve the

design of multiple choice question tests. According to Fone's semiotic point of view,

each question is like an instrument that gets some information (a sample) of

13 Concepts and experimental questions did not appear in the final survey.

54

www.manaraa.com

student's knowledge on a specific topic/objective. However, if such instrument fails

to match topic or student's way to express it, the test fails to verify what he/she

really knows. But, if the instrument is prepared to be redundant (via oversampling),

the likelihood of missing information because one question (in many) failed as

instrument, is reduced (fig. 3.8).

In an analogous way, each question in our online survey was calibrated to

regard the different ability sub-domains that it could measure. For example, the

question in figure 3.3 spans: reading comprehension of a problem statement and a

procedure in stepwise form, identify an algebra word problem and the mechanics of

an instruction sequence, correct use of variables and evaluation of algebraic

expressions, following instructions and hand-tracing.

FIGURE 3.8. Model of Linked Questions to Oversample Skill Domains
(Adapted from [70].)

55

www.manaraa.com

Because all the questions are structured this way, a negligible mistake in one

particular question would be compensated by subsequent questions.

3.5.7 Adapt ing Test Engine to Question Type

Subsection 3.5.4 discussed the need to modify the open-ended nature of some

questions to simplify the implementation of a multiple-choice questionnaire.

Although changes were easy to carry out in the front-end (the HTML provides rich

set of elements to create a variety of forms), they require creative work to transform

the test engine in a flexible back end.

Adapting the test engine to different question styles required us to

standardize types and inventories, dissociate answer information from question file

or test engine, and set a reliable structure for each one.

1. To handle the inventories, a numeric code was associated to the elements of

tables 3.1 and 3.2.

2. For each question two files were specified, one for the HTML form, and one

for the descriptor containing solution, question type, and associated data.

3. Each question solution file was given a structure according to its type, but

easy to decode by the test engine.

(a) #Descriptor file for question

(b) QType=l&Nopts=4&Right=

(c) fl=303&f2=

(d) rl=33&r2=

(f) wl=25&w2

=000&f3=000&f4=

ql003

3&Incorrect=2

=301

25&r3=14&r4=52

=52

FIGURE 3.9. Descriptor of a Simple MCQ Problem.

56

www.manaraa.com

For example, for a simple multiple-choice question (fig. 3.9), the descriptor

file consists of five vectors:

a) Identification line (1 element): Question identification.

b) Answer information (4 elements): Question type, number of options,

number of the correct option, and number of the incorrect option.14

c) Pitfall vector (same elements as number of options): If the question is not

answered correctly, the pitfall code corresponding to the option selected

serves to update the corresponding variable.

d) Ability sub-domains I (variable length): If the question is answered

correctly, all the sub-domains which code is listed are updated positively.

e) Ability sub-domains II (variable length): If the question is answered

incorrectly, all the sub-domains which code is listed are updated

negatively.

Table 3.4 summarizes the question types and their respective file structure.

Question Type

1

MCQ

2

Checklist

Descriptor Structure

• 1 correct answer.

• 1 wrong answer.

• n viable answers, each associated with a specific pitfall

flag.

• 1 set of ADs to be updated if correct answer is selected.

• 1 set of ADs to be updated if wrong answer is selected.

• n correct answers.

• m incorrect answers.

• I viable answers, each associated with a pitfall code.

TABLE 3.4. Descriptors According to Quest ion Type.

14 The "incorrect option number" is a legacy feature. It was kept for compatibility between the test

engine and old questions and techniques.

57

www.manaraa.com

Question Type

3

YNQ

4

Checklist II

(With open explanation)

5

Semi-open

questions

6

Open

questions

Descriptor Structure

• n Y/N questions, each associated with pitfall code.

• 1 set of n m-tuples:

o correct answer (true or false),

o 1 set of ADs to be updated if correct,

o 1 set of ADs to be updated if incorrect,

o 1 pitfall code if incorrect.

• Possibilities when debugging a program:

o No error, no detection, correction not

attempted -> OK.

o Error, no detection, correction not

attempted

-> Possible distraction,

o No error, no detection, correction attempted

-> Debugging problem,

o Error, no detection, correction attempted

-> Possible distraction,

o No error, detection, correction not

attempted

-> Unlucky guess,

o Error, detection, correction not attempted

-> Lucky guess or unable to correct,

o No error detection, correction attempted

-> Debugging problem,

o Error, detection, correction attempted

->OK.

• Answers easy to be parsed: numerical results, one

letter/word input, etc.

• Questions to be read manually:

o For feedback

o To test new questions

TABLE 3.4. Descriptors According to Question Type (cont.)

58

www.manaraa.com

3.6 Enhanced Multiple-Choice Questions

3.6.1 Rating Confidence on Answer

To get more insights regarding student's abilities, the survey requires each answer

to be rated according with the confidence the student has on in it (fig. 3.10).

This technique, suggested by Blunck (2007) and described by Fone in [68],

helps the surveying process to easily appreciate how suitable are student's mental

models with respect to different problem-solving aspects.

What results of following these instructions?

Step 1: Think of a number, but keep it silently in your mind.

Step 2: Take your number and multiply it by 2.

Step 3: Add 8 to the previous result.

Step 4: Take the result in step 3 and subtract the number you started with.

Step 5: Write down your answer.

Select one option: (a) 13 (b) x (c) 8 (d) 6+8 (e) 2x4-8

How confident do you feel with your answer?

(a) I just guessed (b) I had some idea (c) I knew it

FIGURE 3.10. An MCQ Problem Enhanced with Confidence Level.15

15 The original question had a constructed-response structure (fig. 3.3). It was transformed into

selective-response question by providing some options: two concrete values and three algebraic

expressions. To prevent easy recognition of the correct answer (d), the traditional algebraic letter x was

changed by the Greek symbol 6.

59

www.manaraa.com

For example, if the student claims to know the answer, and it was correct,

then, the testing process can be regarded without problem. A similar case occur if

the student claims to have guessed, and it was incorrect.

However, claiming that the answer was known while it was incorrect, then

the testing process has detected a problem, from a misconception to overconfidence.

In the opposite side, assuring that a correct answer was just guessed points to a

need of providing reassuring feedback to stimulate and raise confidence.

Furthermore, as discussed in Chapter 2, being aware of the confidence behind

every action can be very helpful while writing programs [74]. For example, a

common situation is proposing a procedure that solves the situation stated but that

seems unsuitable in other cases. Many students tend to be deterred from solving

problems and making programs while facing with such uncertainty. Nevertheless, if

taught how to work in spite of it, and how to document it, could have positive

consequences and help the students during the review stages of the program

lifecycle.

3.6.2 Option to Skip Quest ion

Traditionally, skipping multiple choice questions is discouraged, regarded as an

erroneous answer, or completely prevented. However, forcing the student to select

an answer in spite of uncertainty belittles the purpose of the assessment. The

opposite case is similar; a question left unanswered provides no information at all

about the reasons behind such decision like lack of time, fear of error,

misunderstanding, uncertainty or fragile knowledge.

60

www.manaraa.com

What results of following these instructions?

Step 1: Think of a number, but keep it silently in your mind.

Step 2: Take your number and multiply it by 2.

Step 3: Add 8 to the previous result.

Step 4: Take the result in step 3 and subtract the number you started with.

Step 5: Write down your answer.

Select one option: (a) 13 (b) * (c) 8 (d) B+8 (e) 2x+8

Why are you skipping this question?

(a) The answer does not appear among the options.

(b) I don't know the answer.

(c) I don't understand the question at all.

(d) Other reason:

FIGURE 3.11. An MCQ Problem with Skipping Option.

There are several aspects to consider the possibility of skipping questions.

1. The questionnaire might be imperfect; questions or options might be

unclear or plain wrong. Skipping such questions, providing proper

explanation, can be very helpful to the test designer.

2. A questionnaire can be completely correct but a student might indicate

the opposite; such situation might be an indicator of reading problems or

even lack of interest.

3. Skipping a question can be indicator of critical thinking. A student that

knows the correct answer and skips it might have better developed

decision-making skills than someone that only selects the answers

provided.

In similar fashion to the discussion in the previous section, being aware of

the reasons behind every action, or inaction, is very important while making

61

www.manaraa.com

programs. If a part of the solution process is unknown, it can be better to document

the issue and skip it, than become stuck on it. In a different case, not taking the

options at face value can be helpful during the initial tests of the program. (Some

students tend to accept any result from an incorrect program just because the

program appeared in a book, was given by the instructor or was produced by

computer.)

3.7 Web-Based Survey Prototype

A web-based surveying prototype, including all features detailed on sections 3.5 and

3.6, was released for testing on October 25, 2007, and it is located at

http://www.cs.jhu.edu/~jorgev/survey.

3.7.1 Quest ionnaire

To simplify the implementation, the current format is of fixed-item length but, in

most cases, each item is selected from a small question bank. The main purpose

each item in the questionnaire is described in table 3.5.

62

http://www.cs.jhu.edu/~jorgev/survey

www.manaraa.com

Ability Domain

1

Reading

Comprehension

2

Problem

Identif ication

3

Algebra

&

Logic

No.

1

2

3

4

5

6

7

8

9

10

Quest ion type

Passage level

Word level

Summariz ing

Reverse word

problem

translat ion

Word problem

translat ion

Word problem

solution (L)

Word problem

solution (A)

Fol lowing

procedure (A)

Boolean

express ions I

Boolean

express ions II

Descript ion

Testing reading comprehension on a generic

content passage. (Main characteristics are

described in a GRE preparation guide cited in

[103].)

Testing reading comprehension on a specific

content passage. (Described in [103] and adapted

to common issues with matrices.)

Identify best sentence summarizing a reading.

(Question aimed to test ability to abstract a

problem out of its context. Designed after

McCracken's observations [117].)

Identify the purpose of a sequence of arithmetic

operations. (Question aimed to test ability to

match a general solution with a concrete problem.)

State a formula, or a short sequence of arithmetic

operations, to solve an algebra word problem.

(Question designed by Mayer [114] to test problem

translation skill.)

Typical algebra word problem; solution can be

deduced logically.

Typical algebra word problem; solution requires

arithmetic operations. (Question designed by

Mayer [114] to test problem translation skill.)

Trace a sequence of algebraic operations that leads

to an algebraic answer. (Question aimed to test

ability to follow a procedure in abstract way.)

Simple question on inequalities and conditions.

Simple question on logic operators and t ru th

tables.

TABLE 3.5. Inventory of Skills Tested with TAPSS 2.0. Some aspects of the

questionnaire items were adapted from [103, 114].

63

www.manaraa.com

Ability Domain

4

Stepwise

p lanning

5

Procedure

comprehens ion

6

Thinking

skills

No.

11

12

13

14

15

16

17

Quest ion type

Symbolic

sequence

Statement

sequence

Debugging

pseudocode I

Debugging

pseudocode II

Fol lowing

instruct ions (S)

Fol lowing

procedure (N)

Critical

th inking &

details

Descript ion

State steps to solve an arithmetic problem.

Different sequences are provided, and the student

has to select one that solves the problem.

(Selective-response question aimed to test ability

for symbolic stepwise planning.)

State in English (pseudocode) the steps to perform

a specific task, for example, produce a numerical

sequence. (Selective-response question aimed to

test ability for descriptive stepwise planning.)

Finding errors. (Question aimed to test ability for

debugging a solution. Designed after common

program debugging questions.)

Correcting errors. (Question aimed to test ability

for debugging a solution. Designed after common

program debugging questions.)

Indicate the result obtained after following

instructions in narrative way (symbolic). (Question

designed by Mayer [114] to test procedure

comprehension skill.)

Indicate the result obtained after following

instructions in narrative way (numerical).

(Question designed by Mayer, 1986, to test

procedure comprehension skill.)

Multiple-choice question with no correct answer

provided. (Question aimed to test attention to

details —lack of correct answer— and critical

thinking skills —how to proceed.)

TABLE 3.5. Inventory of Skills Tested with TAPSS 2.0 (cont.)

64

www.manaraa.com

3.7.2 F r o n t - E n d

The survey's front-end relies on a web browser's capabilities to display each question

and related options as webpages. User's input is handled through the mechanisms of

HTML forms, while question events (numbering, confidence request, skipping

confirmation, etc.) are supported by Javascript snippets embedded in each webpage.

There is a minimal tracking sub-system that relies on cookies and holding user id,

question number, and survey status. Figure 3.12 depicts how the webpage changes

state according to the interaction with the user. For example, every time the test

engine issues a question, it starts at state Qo. Then the user is given two options,

either select an answer or skip the question. In the first case, the webpage changes

state to Qi (question answered) and, automatically, goes to state Fi (confidence

request); in the second case, the page moves to state F2, in which the user either

confirms the action or cancels the skip.

FIGURE 3.12. State-Diagram Model of TAPSS 2.0 Front-End. Qo = New question,

Qi = Answered question, Q2 = Answered question with confidence level, Q3= Question

ready for evaluation, Q4 = Options reset. Fi = Input request for confidence level, F2 =

Input request for skipping explanation.

65

www.manaraa.com

3.8 The Study's Second Phase

This section discusses the pilot application of the online Test of Algorithmic-Problem

Solving Skills, TAPSS 2.0, administered to a small group during the period October

25 to November 19, 2007. The information collected served to verify data integrity,

software reliability and flexibility, and to validate interpretation.

3.8.1 Demographics

The control group consisted of fifteen applicants16 with college-level studies and

programming experience known prior to the application of the test. Attributes such

as gender, ethnic or cultural backgrounds, and native language, were regarded as

irrelevant for this part of the study. Applicants were classified within three

subgroups according to their level of expertise in programming:

• Non-experienced: This subgroup consisted of four people with virtually no

knowledge of programming17 and whose interaction with computers was

limited to mainstream applications. Members of this subgroup had no plans

of coursing programming in the near future.

• Literacy: This subgroup consisted of six persons who were well versed with

information technologies and somewhat acquainted with programming. At

the time, people in this subgroup were involved in the field of information

technology or had a formal programming course several years ago.

16 Group size was deliberately kept small to allow manual review of each questionnaire submitted, as

well as every stage within the surveying process.
17 Some people in this subgroup might have attended a training course in programming before 1997.

However there was minimum learning and the skill was never practiced.

66

www.manaraa.com

• Experienced: This subgroup consisted of five persons that were already

developing software or information systems, and had several years of

experience.

3.8.2 Scor ing

• Quest ionnaire

Each question described in table 3.4 was assigned one point: +1 if answered correctly

and - 1 otherwise. Skipped questions did not receive any points. This raw data was

filed and used to compute all other results described in Chapter 4.

• Confidence Factor

The confidence rate asked the applicant after answering each question was used to

weight raw scores (table 3.6.) For example, if the applicant was guessing, the answer

was disregarded because it does not actually reflect strength or weakness. On the

contrary, if the applicant was sure, the value of answer was magnified to reflect

either a strong skill or a potentially serious misconception.

Answer

Status

Correct

Correct

Correct

Incorrect

Incorrect

Incorrect

T A B L E

Raw

score

1

• : • ' ! • • • . " :

1

-1

-1

-1

3.6. Scot

Confidence

| Multiplying
Level

factor

Sure

Unsure

Guess

Guess

Unsure

Sure

e Adjustmer

2

1

0

0

1

2

it According t

Adjustment

Interpretat ion y

Very good

Good

Disregard

Disregard

Attention

Misconception

o Confidence Leve

,;§c©rejs.

2

1

0

0

-1

-2

.,

67

www.manaraa.com

• Cross-Domain Skill Tracking

In addition, associated sub-domains (see subsection 3.5.5) were updated accordingly

to answer correctness. Main sub-domains related to each question are shown in

table 3.7. (Skill tracking codes are listed in table 3.2.)

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
r

Question type

Passage level

Word level

Summarizing

Reverse word problem translation

Word problem translation

Word problem solution (L)

Word problem solution (A)

Following procedure (A)

Boolean expressions I

Boolean expressions II

Symbolic sequence

Statement sequence

Debugging pseudocode I

Debugging pseudocode II

Following instructions (S)

Following procedure (N)

Critical thinking & details

PABLE 3.7. Main Sub-Domains Ass<

Skill Tracking Codes

11, 12. 1 3 , 2 1 . 2 2 . 2 3 . 5 7 , 6 1

11 ,21 ,22 ,60

11,21,22

14, 27, 25, 32, 33, 51, 61

12, 31, 33, 37, 47

12, 31, 54

12, 31, 32, 54

14, 25, 37, 47, 53, 57

12, 23, 37, 40

12, 23, 38

11, 14, 22, 27, 32, 33, 43, 44, 47

15, 27, 32, 36, 37, 43, 44, 45

11, 15, 21, 32, 37, 40, 47, 54, 55, 57 59

23, 36, 37, 40, 47, 53, 55, 57, 59

13, 21, 52, 53, 60

14, 32, 37, 52, 53, 59

61

jciated to Quest ions in TAPSS 2.0.

• Cross-Question Skill Tracking

Table 3.8 shows the questions that were regarded to integrate skill subsets. Those

questions were averaged to compute a general score for each skill subset involved in

the survey.

68

www.manaraa.com

AD

1

2

3

4

5

6

Skills

General Reading

Problem identification

Word problem translation

Arithmetic operations

Boolean logic

Handling Variables

Planning

Reading pseudocode

Following instructions

Handling arrays

Dealing with abstraction

Details & Critical Thinking

Linked Quest ions

1,3

3 ,4

5 ,6 ,7

4 , 6 , 7

9, 10

5, 16

11, 12

13, 14

8, 15, 16

2, 15

3 ,8

2, 8, 17

TABLE 3.8. Linked Questions to Oversample Skill Domains.

3.8.2 Data Verification

To verify data recording, question scoring, as well as integrity of files in use, each

answer submitted to the system was hand reviewed and analyzed following the

scoring process previously described and the model implemented in TAPSS 2.0.

3.8.3 Quest ion Validation

To appreciate how well the questions matched the intended skill (see table 3.4), each

answer was related with the corresponding confidence level and the programming

experience of the test-taker. In addition, the construct behind most questions was

also reviewed through available, particularly reading comprehension [103], problem

translation and procedure comprehension skills [114].

69

www.manaraa.com

3.8.4 Data Interpretat ion

Answer correctness was used as the primary confirmation of presence of the skill for

which it was intended. Pitfall and sub-domain tracking helped for a more detailed

review, which can point for recalibration needs.

3.8.5 Applicat ion Feedback

Some applicants were interviewed about their experience with the questionnaire,

the surveying system, and also on their opinion about the results. Most meaningful

comments appear in the next chapter.

70

www.manaraa.com

Chapter 4

Results and Discussion

4.1 Summary of Results

Table 4.1 shows a comparative of skill strength for the subgroups in the study.

AD

1

2

3

4

5

T,

Skills

General Reading

Problem identification

Word problem translation

Arithmetic operations

Boolean logic

Handling Variables

Planning

Reading pseudocode

Following instructions

Handling arrays

Dealing with abstraction

Details & Critical Thinking

VBLE 4.1. S u m m a r y of Skill £

No experience

(A 7 = 4)

Score/Strength

-0.2

0.2

0.1

0.2

0.1

0.0

0.0

0.0

-0.2

-0.1

-0.4

-0.2

Strength

W

B

B

B

B

B

B

B

W

B

W

W

Accord

Literacy

(A r = 6)

Score/Strength

0.8

0.1

0.5

0.4

0.9

0.2

0.6

0.5

0.1

0.6

-0.1

0.

i n g to '.

S

B

A

A

S

B

A

A

B

A

B

A

' r o g r a m i

Experienced

(i V = 5)

Score/Strength

0.8

0.1

0.5

0.4

0.9

0.2

0.6

0.5

0.1

0.6

-0.1

0.3

tning

S

B

A

A

S

B

A

A

B

A

B

A

E x p e r t i s e .

Codes: S-strong, A-Acceptable, B-baseline, W-Weak.

71

www.manaraa.com

The information on table 4.1 appears graphically in figure 4.1.

Skill Strength Based on Question Correctness

1 j
0.8 -
0.6 -
0.4
0.2

0
-0.2 -
-0.4 :-

l-©eneral
Reading

-t fc
Problem World problem Arithmetic Boolean logic Variables

identification translation operations.

Skills

H Non-Experienced • Literate • Experienced

FIGURE 4.1. Skill Strength According to Level of Programming Expertise.

Skill Strength Based on Question Correctness

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

Planning Reading LEoJlowing
pseudocode instructions

Arrays AbsHJtion | Details &
Cntica[

Thinking
Skills

5 Non-Experienced • Literate • Experienced

FIGURE 4.1. Skill Strength... (cont.)

4.2 Analysis of Results

Charts in figures 4.3 through 4.6 show results from the software beta-testers, who

used the TAPSS 2.0 prototype during its trial period (10/25 to 11/19). Data appears

organized according to levels of programming expertise: non-experienced, literacy,

72

www.manaraa.com

and experienced. Questionnaire items (table 3.4) are displayed in the horizontal axis

while answer correctness appears in the vertical one.

Correctness is represented with a value between 0 and 1.0 —from absolute

mistake to perfect answer. Skipped questions are represented with negative units.

The scores from problems with sub-questions, items #1, #13 and #14, were computed

by dividing the number of correct answers by the total number of sub-questions.

Thus, a score of 1.0 would be obtained if all sub-questions were answered correctly.

4.2.1 Survey Overview

Figure 4.2 presents a general view of participants' results, organized according to

programming experience. In this chart, answer correctness is presented as average

of all the correct scores on the corresponding question. Incorrect questions were not

regarded, and skipped ones were assigned a negative value to better appreciate

them.

Simple inspection shows that most skipped questions occurred within the

non-experienced subgroup. The literate subgroup tended to skip problems on

planning (questions #11 and #12) and procedure debugging (question #13).

The performance of the experienced subgroup was consistently strong

throughout the test. In contrast, the performance of the literate subgroup faded

noticeable on the domains of planning (questions #11 and #12) and process analysis

(questions #13 through #16).

Answers with low level of correctness in both, experienced and literacy

subgroups, might indicate either an unsuitable question or a very skill-specific one.

73

www.manaraa.com

Such seems to be the case of question #3, a problem on information abstraction, and

question #8, a following-procedure problem with symbolic answer.

Raw Results According to Programming Experience

1.0
0.8
0.6

en 0.4
w
* 0.2
I 0.0
t -0.2
O -0.4

-0.6
-0.8
-1.0

ilM&il
l-M 2 -LP 4 5 6 7 8 9

I
•o

1-1 -

I'. j}„.'±„.'S ii
i-ui-^u-vi^
LI

Questions

I No Experience • Literacy • Experienced

FIGURE 4.2. Average Results from TAPSS 2.0 Pilot Administration. On

average, experienced participants were strong and did not skip questions. Literate

participants were almost as strong as experienced ones, except in planning and

process analysis (questions 11 to 16) where several questions were skipped. The non-

experienced subgroup is in clear disadvantage.

Results on question #3 can be interpreted as confirmation of the McCracken's

group observation "the most difficult part for students seemed to be abstracting the

problem to be solved from the exercise description." [117, p. 133] With respect to

question #8 (fig. 3.10), a problem the author has repeatedly used when teaching

introductory programming18 as item for pre-testing and discussion. In our

experience, most students give a numeric (concrete) answer, and only very few

18 The actual version the author has used in programming courses is shown in figure 3.3.

74

www.manaraa.com

talented students —not necessarily experienced in programming— provide an

algebraic (abstract) one.19

Because both questions deal with abstraction, in its two main meanings —

detail removal and non-concrete thinking, the results can be aligned with Kramer's

observations on the issues of abstraction in computer education [100, 2007].

With respect to the last question (#17), testing attention to details and

critical thinking, it is clear that the experienced subgroup had advantage over the

other two.

4.2.2 Results from the Non-Experienced Subgroup

Figure 4.3 presents results from four participants with no programming experience.

This subgroup had six members initially, but two people decided two quit the survey

after reading the first question. The brief comments they provided pointed to

test/topic anxiety.

In general, participants either skipped questions or guessed answers (see fig.

4.6), which does not provide enough data that could lead to infer applicants'

strengths or potential learning hazards. In this sense, quitting is a clearer indication

of a major learning hazard: programming demands tenacity and ability to persevere,

attributes also expressed by students in ChMura's study [37, p.56a].

19 The author is somewhat surprised by the results of question #8, particularly in the case of

experienced programmers. When the original question was transformed into a MCQ, the author was

unwillingly expecting that the options would work as hints for the applicants.

75

www.manaraa.com

Raw Results from Non-Experieced Applicants

1 n
I .U
0.8 -•
0.6 -

w 0.4 -
(A

« 0.2 -
o 0.0 -n
t -0.2 -
O -0.4 -

-0.6 -
-0.8 -j
. 1 n ' •

al l
2

-

- • —

-

3 -

Q

4 -

-

i -

-

6
II

-

7 e 1
1 1

- - - --

- -

- o - - • ;
-

.

1 ' vni—,_ r
- • - 4 — 5 -

-
-

—

—
-

—

Questions

B Participant 1 • Participant 2 • Participant 3 • Participant 4

--

-

i

16
—

—
—

-

17-
. . .

-

FIGURE 4.3. Results from Applicants with no Programming Experience. A

missing bar indicates a wrong answer in the specific question where it should appear.

Bars with negative value represent skipped questions.

4.2.3 Results from the Literate Subgroup

Figure 4.4 presents the results from six participants with programming experience

at literacy level. Simple inspection shows that most skipped questions came from the

same applicant. Also, it can be seen that participants faced most difficulties on

planning (questions #11 and #12) and on debugging (question #13 and #14). Such

results seem to be consistent with the programming experience of the applicants.

Also, errors in question #3 and question #8 are consistent with the findings on

abstraction discussed in subsection 4.2.1.

76

www.manaraa.com

Raw Results from Literacy Applicants

v>
in
0) c

+•< u
g
o
o

1.0

0.5

0.0

-0.5

-1.0

I
10 I

•i l l
II4

Questions

• Participant 1 • Participant 2 O Participant 3 • Participant 4 • Participant 5 B Participant 6

FIGURE 4.4. Results from Applicants with Programming Experience at

Literacy Level. A missing bar indicates a wrong answer in the specific question

where it should appear. Bars with negative value represent skipped questions. Bars

with values lower than 1.0 only appear in items with sub-questions.

4.2.4 Results from the Experienced Subgroup

Figure 4.5 presents results from five participants with programming experience.

Simple inspection of the chart seems to indicate that results are consistent with the

programming experience of the applicants. Very few questions were skipped, and by

different applicants. Difficulties with questions #3 and #8 remained consistent with

the findings discussed in subsection 4.2.1.

With respect to the last question (# 17), three out of five applicants noticed

that no correct answer was among the options, and therefore, they chose to skip the

question and provided proper feedback about their decision. In this sense, the

question proved useful to test the cognitive skills for which it was designed. (See

comment in figure 4.12.)

77

www.manaraa.com

The fact that most members from the experienced subgroup scored below 1.0

in items #1 (reading comprehension), #13, and #14 (debugging), might indicate

issues with the questions themselves: inappropriate content, confusing structure or

poor calibration.

Raw Results from Experienced Applicants

1.0

0.5
w </)
0)

c
o 0.0
o
° -0.5

-1.0

i
9 10 13 14 H5 16 17

Questions

I Participant 1 B Participant 2 • Participant 3 • Participant 4 • Participant 5

FIGURE 4.5. Results from Applicants with Programming Experience. A

missing bar indicates a wrong answer in the specific question where it should appear.

Bars with negative value represent skipped questions. Bars with values lower than

1.0 only appear in items with sub-questions.

4.3 The Confidence Factor

Figure 4.6 shows how confident participants felt with their answers throughout the

survey. Simple inspection reveals that the literate subgroup was guessing on

planning (questions #11 and #12) and debugging (question #13), while the

experienced subgroup was quite sure on the answers.

78

www.manaraa.com

Confidence Level According to Programming Expertise

1 2 3 4 5 6 7 8

Questions

H Non-Experienced • Literacy O Experienced

FIGURE 4.6. Answer Confidence to Level of Programming Expertise. A

confidence level of 1 corresponds to guessing the answer, level 2 is for some

knowledge, and level 3 is for certainty.

The confidence level was used to weight the raw scores provided by the survey

according to table 3.6. For example, if the participant was guessing, the answer was

disregarded because it would not reflect strength or weakness. On the contrary, if

the participant had complete certainty, the value of the answer was magnified to

reflect either a strong skill or a potentially serious misconception. The whole

discussion on section 4.4 is based on results adjusted after confidence level.

4.4 Analysis of Skill Strength

Figures 4.7 to 4.9 show the strength of skills from the literate and experienced

subgroups. The skills appear encoded in the horizontal axis (table 3.3). Simple

inspection of figure 4.7 shows that the experienced subgroup had the strongest

skills when tested on planning and process analysis.

79

www.manaraa.com

Skill Strength According to Programming Experience

10.0 -|
8.0 -
6.0
4.0
2.0
0.0

-2.0
-4.0

I JBftD
11 12 13 14 15 21 ?2 ?3 ?* T 3" ^2 ;3 35 37 33

Sub domain

• Experienced • Literate

FIGURE 4.7. Average Skill Strength from TAPSS 2.0 Pilot Administration.

Very good: 6-10, Good: 2-6, Base: 0-2, Needs attention: less than 0.

Skill Strength - Literacy Subgroup

10.0

-10.0
Sub-Domains

5 Participant 1 • Participant 2 D Participant 3 D Participant 4 • Participant 5 • Participant 6

FIGURE 4.8. Skill Strength from Participants with Programming Experience

at Literacy Level. Very good: 6 to 10, Good: 2 to 6, Base: 0 to 2, Attention needed: 0

to -5, Misconception: -5 to -10.

80

www.manaraa.com

FIGURE 4.9. Skill Strength from Partic ipants wi th Programming Experience

at Literacy Level. Very good: 6 to 10, Good: 2 to 6, Base: 0 to 2, Attention needed: 0

to -5, Misconception: -5 to -10.

4.5 Purposely-Selected Cases

4.5.1 Looking at Individual Level

The previous charts only show aggregated data, so the information inferred may not

be representative of each member in the group. We show two cases in which a closer

look can be very helpful to better understanding the problem-solving abilities of the

participant.

Figure 4.10 shows scores, both raw and adjusted, of an applicant from the

literate subgroup. It can be seen that the applicant did well in most questions,

guessed in two, and had only two minor errors. However, a major issue seems to be

detected by the second question (the error appears magnified by the confidence

level.)

81

www.manaraa.com

Results from an Applicant of the Literacy Subgroup

2.0 -
1.5 -

* 1 0 -
8 0.5 -
"o 0 0 -

fe -0.5 -
° -1.0-

-1.5 -
-2.0 -

l i l l
1 1 3 4 5

1
11J
• ' J

l n a iu
9 1D 11 12 13

Questions

• Raw score 1 • Adjusted score

lIL
14 15 16 1 |

I
i
i

FIGURE 4.10. Results from an Applicant with Programming Experience at

Literacy Level. Scores were adjusted after applicant's confidence level (second bar):

Twice the height - very confident; same height - somewhat confident; no bar - just

guessing.

Nevertheless, the same applicant later commented:

"I misread the second question, but I realized too late. It was asking the

word in the row, not in the column... well... I guess that was the idea,

became aware that I don't read well..."

Such comment can be interpreted as the participant's ability to reflect

on her own work and explain corrections if needed.

Another example is shown in figure 4.11. The participant skipped most

questions but left several personal comments. The fact that he went through

all the questions, and even had the time to write comments, could indicate

motivational issues rather than fragile problem-solving skills. If tha t were the

case, and the applicant had to course introductory programming, the

motivational aspect should be addressed before instruction.

82

www.manaraa.com

1. Skipped: Don't know the answer.

2. Error 109: Rows confused by columns.

3. Skipped: Don't know the answer.

4. Skipped: Don't know the answer.

5. Skipped: Don't know the answer.

6. Skipped: "I hate puzzles."

7. Skipped: "I am dumb."

8. Correct (guess.)

9. Correct (completely sure.)

10. Skipped: "I stink at math."

11. Skipped: "What is an integer?"

12. Skipped: "Takes too long to figure out."

13. Correct (guess.)

14. Skipped: "I don't program much."

15. Error

16. Skipped: "Lost me."

17. Skipped: "I am too lazy."

FIGURE 4.11. Comments on the Submission from a Non-Experienced Applicant.

4.5.2 General Feedback

"Hey! What was the answer to the last problem? I checked the arithmetic

several times but couldn't find the option that matched. Were we supposed

to skip it? I did it after noticing that this option had an explanation like

'Answer not found.'"

FIGURE 4.12. Comment on the Question Regarding Critical Thinking and

Attention to Details. (Literate subgroup.)

83

www.manaraa.com

I have to admit it wasn't easy to answer the questionnaire, but I like it.

I have some comments:

1. Because it starts with prime numbers I felt confused. Maybe it could be

good an introduction to the topics to be addressed.

2. Please, start with easy questions... That stuff about the primes was very

difficult... maybe I'm not very acquainted...? I felt I was lacking a lot of

knowledge from computing, math and algebra.

3. That idea of having easy questions first is to motivate the user to

continue and give him the sensation that she can [solve] that question

and the next one.

4. It says that the word "blind" is in the 4th line, but it's in the 3rd [one].

5. Do you take time to answer?

6.1 didn't understand the calculator [question].

7. Please, remind the directions, I ended using paper and pencil for

computations, was it allowed?

8. Problem 17 is [being] repeated.

FIGURE 4.13. General Comment on the Survey (Literate subgroup.)

84

www.manaraa.com

Author: Hey! Good to find you online. Could you help me to check my program?

Tester: Of course, what program?

Author: http://www.cs.jhu.edu/~jorgev/survey.htm

Tester: Oh! I remember, you gave me this about one year ago, right?

Author: But in paper.

Tester: In fact, it was in a file and I returned it by e-mail.

Tester: It's entertaining.

Tester: In the 11, the calculator doesn't have the functions wr and int...

Author: / remove it on purpose.

Tester: Why?! Without visual aid I have to use the calculator,

I wanted to do it mentally.

Author: You just need paper.

Tester: The procedures table is not quite clear...

Tester: After step 9, isn't a "-"missing?

Tester: More, two more columns ahead, before the end of process,

in the 13, there is no instruction to display the results.

Author: Oops! Sorry. Any suggestion to simplify the table?

Tester: Rather than simplify, don't omit operations. Otherwise, you'd need

to add the option "none of the above," but that is a cheap trick.

Tester: The writing in the 15 is funny. At first glance I understand that

you move up in the first column, and down in the second, but that

does not allow to make a diagonal.

Author: Came from and old test I updated. However, there is no diagonal.

Tester: I skipped, I didn't understand it.

Tester: I'm on the 17 now... No option seems good...

Author: You are right.

FIGURE 4.14. Survey Review through and Online Interview. (Experienced

programmer.)

85

http://www.cs.jhu.edu/~jorgev/survey.htm

www.manaraa.com

Chapter 5

Conclusions and Impact

5.1 Overview

In this dissertation we have addressed the problem of understanding what prevents

many college students from learning computer programming. Our main assumption

has been that behind this situation there are factors indirectly related with

coursework like deficiencies in reading, arithmetic, or algebra; abilities which

mastery precedes the programming level. To this end, we have modeled and

developed a test specialized in algorithmic problem-solving skills, aiming to survey

fundamental abilities in computer programming.

The test is comprised of three main elements: a questionnaire, a surveying

process, and a scoring model. Each item in the questionnaire corresponds to a

problem-solving skill fundamental for programming (see table 5.1.) Most questions

are multiple-choice with multiple valid answers and span several sub-ability

domains (see subsection 3.5.6). The surveying process involves requesting the

applicants to rate their confidence on their own answers, and gives them the

possibility to skip questions. The scoring model consists of weighting answers
86

www.manaraa.com

according to the corresponding confidence level, and updating several skill-tracking

variables according to the correctness of each answer.

The test was implemented as a web-based application dubbed TAPSS 2.0,

and tested during the period October 25 to November 19, 2007. Comments and

reflections on the results and their impact are discussed in the following sections.

Question No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Skill

Reading comprehension: passage level

Reading comprehension: word level

Problem identification

Reverse word problem translation

Word problem translation

Word problem (logic) solution

Word problem (arithmetic) solution

Following (algebraic) procedure

Boolean logic: inequalities

Boolean logic: truth tables

Stepwise planning: symbolic sequence

Stepwise planning: statement sequence

Debugging pseudocode: finding errors

Debugging pseudocode: correcting errors

Following instructions

Following procedure

Critical thinking & details

TABLE 5.1. Questionnaire Items and Corresponding Skills.

87

www.manaraa.com

5.2 Discussion of Key Findings

5.2.1 The Quest ionnaire

Our preliminary questionnaire was developed in informal way, close in content and

form to classwork exercises and exams. Thus, its effectiveness as skill testing

instrument was unclear. In contrast, the careful design of the final questionnaire

has allowed reviewing each question. Table 5.2 summarizes our review of each item

in the survey.

• Abstraction

Although a low level of correctness might be due to an unsuitable question, it can

result from a highly skill-specific one. Such seems to be the case of question #3, an

information abstraction problem, and question #8, a following-procedure problem

with abstract answer.

Results on question #3 can be interpreted as confirmation of the McCracken's

group observation "the most difficult part for students seemed to be abstracting the

problem to be solved from the exercise description." [117, p. 133] With respect to

question #8 (fig. 3.10), a problem the author has repeatedly used when teaching

introductory programming for pre-testing and discussion. In our experience, most

students give a numeric answer, and only very few students —not necessarily

experienced in programming— provide an algebraic one.

Because both questions deal with abstraction, in its two main meanings —

detail removal and non-concrete thinking, the results can be aligned with Kramer's

observations on the problem of abstraction in computer education [100].

88

www.manaraa.com

Furthermore, these two questions can serve as a model to create a specific

instrument to test abstract thinking and abstraction skills in computer science

students. (Kramer's research has been unable to find a suitable instrument for such

purpose, [100, p.42].)

• Critical Thinking and Details

Item #17 was a multiple-choice question with no correct answer provided, and it was

aimed to test attention to details (i.e., noticing lack of correct answer) and critical

thinking skills (i.e., how to proceed.) From a problem-solving perspective, a student

that knows the correct answer, and decides to skip this question, makes a better

decision- than someone that knows the answer but selects any of the provided ones.

From a programming perspective, this kind of question reflects attention to

details and awareness of the reasons behind actions, both important qualities for

making programs. For example, if some part of the solution process is unknown, it

can be better to document the issue and skip it, than become stuck on it. In a

different case, not taking the options at face value can be helpful during the initial

testing of the program, particularly because a number of students tend to accept

results from incorrect programs just because they appeared in a book, were given by

the instructor or, simply, were executed by a computer.

From the results presented in the previous chapter, it is clear that people

with the experienced subgroup had the advantage over the other two. Also, the

question worked as expected (see comments on figures 4.12 and 4.14.)

89

www.manaraa.com

• Reading

Regarding question #1, general reading comprehension, despite the fact that all the

answers can be found in the passage, the topic seemed to deeply affect the attitude

of the student towards the question, and therefore, his/her confidence and answers.

The situation was particularly noticeable on the reading about prime numbers. A

couple of examples: One applicant made a specific remark about how difficult was

this question (see fig. 4.12), and other who did well in a reading no related to prime

numbers, failed when asked to find the best phrase summarizing the prime numbers

reading (question #3).

Because correctness of this question was lower than expected, its

effectiveness is unclear and a thorough review of this item will follow.

• Planning and Debugging

The fact that most members from the subgroup with programming experience scored

below 1.0 in problems regarding stepwise planning (questions #11 and #12)

debugging pseudocode (questions #13 and #14), might indicate issues with the

questions themselves: inappropriate content, confusing structure or poor calibration.

At this point, their effectiveness is unsatisfactory and a thorough review of these

items will follow.

90

www.manaraa.com

Quest ion

General reading (#1)

Specific reading (#2)

Summary (#3)

Reverse word problem

(#4)

Arithmetic (#5, #6, #7)

Following procedure

with algebraic answer

(#8)

Inequalities (#9)

Logic propositions (#10)

Effectiveness

Unclear

Very good

Unclear

Very good

Very good

Unclear

Good

Good

Comment

The question worked as expected, but its

contribution to the results is unclear.

Either the readings or the sub-questions

might not be suitable for the goals of the

test.

The short reading and the question were

adequate. The question properly detected

the common confusion between rows and

columns.

Most applicants had problems to find the

best phrase summarizing the reading. It is

related to question #1 , so the reading topic

might be the cause.

The attention to detail in reading both,

question and options, worked as expected.

(See discussion in subsection 3.4.2)

Worked as expected to appreciate basic

arithmetic skills.

Most applicants give a numeric answer

rather than an algebraic one. This

indicates a problem either with the

question or the intended skill. (See

discussion in subsection 4.2.1)

In general and regardless of programming

experience, the question was answered

correctly. However, the question might be

too simple.

The question seemed to be problematic for

people with no programming experienced

at all. However, the question might be too

simple.

TABLE 5.2 Main Comments about Questionnaire Items.

91

www.manaraa.com

Question

Planning (#11, #12)

Tracing pseudocode (#13,

#14)

Procedure

comprehension (#15,

#16)

Attention to detail and

critical thinking (#17)

Effectiveness

Unsatisfactory

Unsatisfactory

Very good

Very good

Comment

The results were poor even in the

experienced subgroup. Question, options or

notation could have complicated this

problem.

In general, only the experienced subgroup

was able to solve these problems. Although

this result is not surprising, the question

format might have prevented other people

from answering.

Both questions seemed to be useful to

appreciate this skill. Simpler problems

would help to better appreciate the skills of

the non-experienced subgroup.

The question worked as expected,

applicant needed to observe that no viable

answer was provided and that skipping the

option was a valid course of action.

TABLE 5.2 Main Comments about Questionnaire Items.

5.2.2 Self-Rating Confidence

Although a couple of participants commented that self-rating was a tiresome

process, we think the effort involved mimics valuable attributes required by the

programming activity:

• Perseverance. Oftentimes, patience and perseverance are key attributes for

succeeding in every stage of the programming lifecycle (section 2.5) to deliver

a working program. An applicant who gets tired of going through all aspects

of the surveying process, or quits it, might have a hard time if enrolled in a

programming course. In this context, quitting is clearer indication of a major

92

www.manaraa.com

learning hazard: programming demands tenacity and ability to persevere,

attributes also expressed by students in ChMura's study [37, p.56a].

• Self-reflection. Despite success in making a working program, truly

understanding requires reflection and certainty of every aspect of the

problem solving and programming processes involved [74]. In some way, the

survey promotes this when asking the participant to rate the confidence in

his/her answer.

• Cautious confidence. Constant doubt is not helpful in making programs,

but overconfidence is not useful either (a programmer who overestimates

his/her abilities easily oversees pitfalls.) The surveying process implemented

can potentially detect overconfidence by presenting the same problem in a

different context, or with different answers. In addition, it can help to prevent

it by promoting double-checking through the self-rating confidence

mechanism.

5.2.3 Motivation

Although the results from the non-experienced subgroup were lower than expected,

the situation is not uncommon in programming classes. Students without any

computing experience, non-science/engineering majors, or simply non-interested,

often perform poorer than expected.

93

www.manaraa.com

In the case of the non-experienced subgroup, the performance might be

attributed to lack of attention to the test, a situation that can occur without

proper motivation, like a grade, questions being difficult or beyond their

interests.

Currently, TAPSS 2.0 does not provide enough information regarding

the skills of applicants with characteristics resembling those of the non-

experienced sub-group. A student performing at this level would benefit of

thorough academic advice if planning to attend programming courses.

5.2.4 Flexible Surveying Mechanism

After our experience in fine-tuning TAPSS 2.0 test engine, by analyzing the data

provided, further substantiated the data with interviews, it was clear that the

software architecture was flexible enough to allow easy maintenance and

upgrade.

At this point in time, the system is ready to be enhance by

incorporating hints if an almost-correct option is selected, provide immediate

feedback after submitting an answer, and allow chained questions (i.e., one

problem broken down into several questions.)

94

www.manaraa.com

5.3 C o n t r i b u t i o n s

5.3.1 Theoretical Aspects

• New Items to Test Thinking.

As pointed by Mayer [114], Kramer [100], and Hazzan (commented in [100, p. 42])

there is a need for specific instrument to test logic, abstract thinking and

abstraction skills in computer science students. To this end, our questions involving

abstract thinking (see table 5.1, questions #3 and #8) can serve as model to design

such kind of instruments.

• Qualitative Research

Our study has followed a qualitative approach to identify problem-solving abilities

and track student progress. Nevertheless, it has also set the foundation to formalize

a methodology, as well as an effective instrument, to gather statistics on basic

problem-solving skills.

In addition, the methods and processes followed in our study can help

programming instructors to create their own tools and questions, as well as

to promote and guide further studies.

• Identif ication of Problem-Solving Skills

Throughout our study we have been identifying a minimum of skills and elements to

test with the surveying instrument. Besides, the technique implemented allows

creating profiles based on development of problem-solving skills, which in turn, can

be used to perform longitudinal studies (i.e., track student progress throughout a

95

www.manaraa.com

course) and add an outcomes-based assessment component to computer

programming courses.

In addition, we have set several elements to monitor and track during the

surveying process: (i) A model of five ability domains involved in problem solving

(5-AD), (ii) an inventory of problem-solving skills related to introductory

programming, and (Hi) an inventory of common programming pitfalls.

5.3.2 Pract ical Benefits

Besides providing a pre-testing tool the author will use in future programming

courses, this study will help to set guidelines in three instructional directions:

(i) constructivist-grounded training for teaching assistants specialized in computer

programming, (ii) curricula assessment for introductory programming courses, and

(iii) provide students with more effective feedback regarding computer programming

skills to become fluent with information technologies.

5.4 Fu tu re Work

The preceding chapters have discussed the development of a test of algorithmic

problem-solving skills, its web-based implementation, and the results from its pilot

administration. Based on the analysis of results and feedback received, several

questions have to be revisited, and the questionnaire as whole refined.

The items on stepwise planning and pseudocode debugging require particular

attention. Interviews with colleagues and students will be conducted to better

appreciate how useful is the current format of such items and how improve them. In

96

www.manaraa.com

parallel, the surveying process will be enhanced to enable study of quantitative

aspects of problem solving skills.

Additionally, our preliminary results seem to indicate that this system can be

converted into an instrument for developmental assessment if administered several times

through the course. We would results obtained during the first administration as baseline

and then proceed to apply longitudinal tracking. Furthermore, TAPSS 2.0 could serve as

platform to build an adaptive tutorial to help students in developing skills in language-

independent algorithmic thinking, by detecting learning issues and critical skills, and

taking the appropriate path to help them reinforce the learning process of algorithm

creation. At this point in time, the system is ready to be enhanced by incorporating hints

if an almost-correct option is selected, provide immediate feedback after submitting an

answer, allow chained questions (i.e., one problem broken down into several questions)

and follow Cabral-Vasconcelos heuristics for problem-solving [31, 166]. (A problem-

solving strategy modeled as a sequence of stages to be performed conditionally. At each

condition point there is a questionnaire to help students in the thinking process, promote

review of their work at each stage, find necessary concepts, independent and dependent

variables, formulas, predict and contrast results after following the designed strategy, and

correct them if needed.)

Furthermore, innovative training methods and tools can be explored because of

the flexibility of the test engine and the question bank. For example, the surveying

process could be tailored to practice web-search skills like finding and understanding

information from the Wikipedia20

20 Suggested by G. Masson on December 18, 2007.
97

www.manaraa.com

Other surveying aspects still requiring further study are timing and guessing: How

important is tracking time for each questionnaire item, or how random is a guess. Such

study may involve psychological factors that will require advice from experts on that

field.

5.5 Summary

This dissertation has presented the development of a test for algorithmic problem-

solving skills aiming to survey abilities fundamental to computer programming. The

work has been grounded in a constructivist theoretical framework and has followed

a hermeneutic approach to understand and integrate common programming errors,

programming-specific thinking styles and problem-solving ability domains. The web-

based survey prototype, along with the methodological framework associated, are

aimed to provide programming instructors with information and resources to

differentiate instruction according to diverse levels of problem-solving abilities, as

well as help students to reflect on their problem solving strengths, while gaining a

deeper understanding of the knowledge, abilities, and cognitive processes needed to

become skillful in creating algorithms and elaborate computer programs.

98

www.manaraa.com

Bibliography

[1] ACM and IEEE Computer Society. Computing Curricula 2001, Computer

Science. December 2001.

[2] Adair, J., Problem Solving, A Top-Down Approach. Scott, Foresman and Co.

Glenview, II. 1989.

[3] Aiken, R., et al, "Fluency in Information Technology: A Second Course for Non-

CIS Majors." Proceedings of the SIGCSE 2000 Symposium. Austin, TX. March

2000. pp.280-284.

[4] Al-A'ali, M., "Evaluation of Teaching an Arabic Programming Language

(ARABLANG)." Computers in Education Journal. April-June, 2007. pp.37-49.

[5] Ala-Mutka, K., "Problems in Learning and Teaching Programming." Technical

Report for the Codewitz Project. Tampere University of Technology Institute of

Software Systems. (Circa 2004). <http://www.cs.tut.fi/~-codewitz> Accessed on

December 5, 2006.

[6] Allison, I., et al., "A Virtual Learning Environment for Introductory

Programming." Proceedings of the 3rd Annual Conference of the LTSN Centre

for Information and Computer Sciences, Loughborough, UK. August 2002.

pp.48-52.

99

http://www.cs.tut.fi/~-codewitz

www.manaraa.com

[7] Alvesson, M., and Skolberg, K., Reflexive Methodology. SAGE publications.

London, 2000.

[8] Armour, P. G., "The unconscious Art of Testing." Communications of the ACM.

January 2005. pp. 15-18.

[9] Bailey, J. L. and Stefaniak, G., "Industry Perceptions of the Knowledge, Skills,

and Abilities Needed by Computer Programmers." Proceedings of the 2001

ACMSIGCPR. April 2001. pp.93-99.

[10] Barnes, D. J., "Introductory Problem Solving in Computer Science." 5th

Annual Conference on the Teaching of Computing, Centre for Teaching

Computing, Dublin City University, Dublin 9, Ireland. August 1997. pp.36-39.

[11] Barnes, D. J., "Students Asking Questions: Facilitating Questioning Aids

Understanding and Enhances Software Engineering Skills." Inroads, The

SIGCSE Bulletin, December 1997. pp.38-41.

[12] Barnes, D. J., "Public Forum Help Seeking: the Impact of Providing Anonymity

on Student Help Seeking Behaviour." Proceedings of the Computer Based

Learning in Science Conference. Enschede, the Netherlands, July, 1999.

[13] Bayman, P. and Mayer, R. E., "A Diagnosis of Beginning Programmers'

Misconceptions of BASIC Programming Statements." Communications of the

ACM. September, 1983. pp.677-679.

[14] Beaubouef, T., "Why Computer Science Students Need Language." Inroads,

The SIGCSE Bulletin, December 2002. pp.57-59.

[15] Beaubouef, T., "Why Computer Science Students Need Math." Inroads, The

SIGCSE Bulletin, December 2003. pp.51-54.

100

www.manaraa.com

[16] Begum, M., "An Ontology for Teaching Programming." Doctoral Consortium.

SIGCSE 2004 Symposium. ACM. Norfolk, VA. March 2004.

[17] Beisy, C. and Mayers, M., "What IT Labor Shortage." Ubiquity, ACM IT

Magazine. February 21, 2000.

< http://www.acm.org/ubiquity/views/c_beise_l.html> Last accessed: June 18,

2007.

[18] Bell, D., et al., The Essence of Program Design. Prentice Hall. London, UK.

1997.

[19] Ben-Ari, M., "Constructivism in Computer Science Education." Proceedings of

the SIGCSE 1998 Symposium. ACM, Atlanta, GA. February 1998. pp.257-268.

[20] Ben-Ari, M., "Constructivism in Computer Science Education." Journal of

Computers in Mathematics and Science Teaching. Vol.20, No.l, 2001. pp.45-73.

(AACE digital library: http://dl.aace.org/6381)

[21] Ben-Ari, M., et al. "Computer Architecture and Mental Models", Proceedings

of the SIGCSE 2005 Symposium. ACM, St. Louis, MI. February 2005. pp. 101-

105.

[22] Berlinsky, D., The advent of the Algorithm, the Idea that Rules the World.

Harcourt, Inc. New York, NY. 2000.

[23] Bonar, J. and Soloway, E., "Preprogramming Knowledge: A Major Source of

Misconceptions in Novice Programmers." In: Soloway & Spohrer, Studying the

Novice Programmer, 1989. pp.325-354.

[24] Bores, R. And Rosales, R. Computacion: Metodologia, Logica Computacional y

Programacion. McGraw Hill, Mexico. 1994.

101

http://www.acm.org/ubiquity/views/c_beise_l.html
http://dl.aace.org/6381

www.manaraa.com

[25] Bruce, K. B., "Controversy on How to Teach CS1," Inroads, The SIGCSE

Bulletin, December 2004. pp.29-34.

[26] Bruckman, A. and Edwards, E., "Show we Leverage Natural-Language

Knowledge? An Analysis of User Errors in a Natural-Language-Style

Programming Language." Proceedings of CHF99. Pittsburgh, PA. May 1999.

pp.207-214.

[27] Bruhn R. E. and Burton, P. J., "An Approach to Teaching Java Using

Computers." Inroads, The SIGCSE Bulletin, December 2003. pp.94-99.

[28] Buck, D and Stucki, D. J., "Design Early Considered Harmful: Graduated

Exposure to Complexity and Structure Based on Levels of Cognitive

Development." Proceedings of SIGCSE 2000 Symposium. March 2000, pp. 75-

79.

[29] Buck, D and Stucki, D. J., "JKarelRobot: A Case Study in Supporting Levels of

Cognitive Development in the Computer Science Curriculum." Proceedings of

SIGCSE 2001 Symposium. February 2001, pp. 16-20.

[30] Burton, P. J., and Bruhn R. E., "Teaching Programming in the OOP Era."

Inroads, The SIGCSE Bulletin, June 2003. pp.111-114.

[31] Cabral, L., et al., "Problem Solving." Contactos, Vol.11, No.8, Universidad

Autonoma Metropolitana, Mexico, 1995. pp.42-51,

[32] Carlisle, M. C, "RAPTOR: Introducing Programming to Non-Majors with

Flowcharts." Journal of Computing Sciences in Colleges, Volume 19 Issue 4,

April 2004.

102

www.manaraa.com

[33] Carlisle, M. C. "RAPTOK: a Visual Programming Environment for Teaching

Algorithmic Problem Solving," Proceedings of the SIGCSE 2005 Symposium.

ACM, St. Louis, MI. February 2005.

[34] Carroll, J. M., The Nurnberg Funnel: Designing Minimalist Instruction for

Practical Computer Skill, MIT Press. Cambridge, MA. 1990.

[35] Centro de didactica UNAM. Manual de Diddctica General. Programa Nacional

de Formation de Profesores. Asociacion Nacional de Universidades e Institutos

de Ensenanza Superior. Mexico, 1972.

[36] Chai, I., "Pedagogical Framework Documentation: A Research Proposal."

Empirical Studies of Programmers '97. Student Workshop, Alexandria,

Virginia, 24-26 October, 1997

[37] ChMura, G. A., "What Abilities are Necessary for Success in Computer

Science?" Inroads, The SIGCSE Bulletin, December 1998. pp.55a-58a.

[38] Clear, T., "The Waterfall is Dead - Long Live the Waterfall!!" Inroads, The

SIGCSE Bulletin, December 2003. pp.13-14.

[39] Colwell, B., "Engineers, Programmers, and Black Boxes." IEEE Computer

Magazine. March 2005. pp.8-11.

[40] Coombs, M. J. and Hartley, R. T., "Debugging User Conceptions of

Interpretation Processes." Proceedings of the 5th National Conference on

Artificial Intelligence. Philadelphia, PA, August 11-15, 1986. pp.303-307

[41] Cooper, S., et al, "Developing Algorithmic Thinking With Alice." Proceedings

ISECON2000, Philadelphia, PA, 2000. pp.506-539.

103

www.manaraa.com

[42] Cunningham, S., "Graphical Problem Solving and Visual Communication in

the Beginning Computer Graphics Course." Proceedings of the SIGCSE 2002

Symposium. Covington, KY. February-March 2002. pp. 181-185.

[43] Crawford, C, "How to Think: Algorithmic Thinking." Journal of Computer

Game Design v.7, 1993.

http://www.erasmatazz.com/library/JCGD_Volume_7/Algorithmic_Thinking.ht

ml (last accessed: August 21, 2003.)

[44] Crotty, M., The Foundations of Social Research: Meaning and Perspective in

the research Process. SAGE Publications, London 1998.

[45] Curtis A. C, et al., "A Methodology for Active, Student-Controlled Learning:

Motivating our Weakest Students." Proceedings of the SIGCSE 1996

Symposium, pp. 195-199.

[46] Dale, N. and Lewis, J., Computer Science Illuminated. Jones and Bartlett

Publishers.Sudbury, MA. 2004.

[47] Decker, A., "Evaluating Skills Necessary for Computer Science." SIGCSE 2003

Doctoral Consortium. 2003.

[48] Decker, A., "How Students Measure Up: Creation of an Assessment Tool for

CS1." SIGCSE 2004 Doctoral Consortium. 2004.

[49] Decker, A. How Students Measure Up: Assessment Instrument for Introductory

Computer Science. Ph.D. Dissertation. University at Buffalo. May 2007.

[50] Deek, F.P., et al. "A common model for problem solving and program

development." IEEE Transactions on Education. November 1999. pp.331-336.

104

http://www.erasmatazz.com/library/JCGD_Volume_7/Algorithmic_Thinking.ht

www.manaraa.com

[51] Deek, F.P. and McHugh, J. A. "Problem Solving and Cognitive Foundations for

Program Development: An Integrated Model." Sixth International Conference

on Computer Based Learning in Science. Nicosia, Cyprus, 2003. pp. 266-271.

[52] Deimel Jr., L. E. "The Uses of Program Reading." Inroads, The SIGCSE

Bulletin, June 1985, pp.5-14.

[53] DeFranco-Tommarello, J., Literature Review of Collaborative Problem Solving

and Groupware in the Software Development Domain. State of the Art Review

Paper, New Jersey Institute of Technology, (circa 2002). <http://

web.njit.edu/~hiltz/SOTA_JDT.doO, retrieved on November 23, 2007.

[54] de Lemos, M. A., and Barros, L. N., "A Didactic Interface in a Programming

Tutor." Proceedings of the 11th International Conference of Artificial

Intelligence in Education. Sydney, Australia. July 2003. pp.433-440.

[55] Denning, P. J. "Mastering the Mess." Communications of the ACM, April 2007.

pp.21-25.

[56] DePasquale, P. J. Improving Learning of Programming Languages Through

the Implementation of Levels in Program Development Environments. Ph.D.

Dissertation. Virginia Polytechnic Institute and State University. Summer

2003.

[57] desJardin, M. et al., "Representing a Student's Learning States and

Transitions". AAAI Technical Report, 1995.

[58] Dromey, R. G. How to Solve it by Computer. Prentice Hall. Englewood Cliffs,

NJ. 1982.

[59] Du Bolay, "Some Difficulties of Learning Programming." In: Soloway &

Spohrer, Studying the Novice Programmer, 1989. pp.283-300.

105

http://
http://web.njit.edu/~hiltz/SOTA_

www.manaraa.com

[60] Egan, M. L., "Students with Asperger's Syndrome in the CS Classroom."

Proceedings of the SIGCSE 2005 Symposium. ACM, St. Louis, MI. February

2005. pp.27-30.

[61] Elsehoff, J. L. and Marcotty, M., "Improving Computer Program Readability to

Aid Modification." Communications of the ACM, August 1982. pp.512-521.

[62] English, J., "Experience with a Computer-Assisted Formal Programming

Examination." Proceedings ofITiCSE'02. p.51-54. Denmark, 2002.

[63] Etter, Delores M., C++ for Engineers and Scientists. Prentice Hall. 1997.

[64] Fedje, C. G., "Program Misconceptions: Breaking the Patterns of Thinking."

Journal of Family and Consumer Sciences Education. Vol. 17. No. 2. 1999.

pp.11-19.

[65] Fincher, S., et al., "Multi-Institutional, Multi-National Studies in CSEd

Research: Some design considerations and trade-offs." Proceedings of the 1st

International Computing Education Research Workshop, ICER 2005

[66] Fitzgerald, S., et al., "Strategies that Students Use to Trace Code: An Analysis

Based in Grounded Theory." Proceedings of ICER 2005, pp.69-802.

[67] Flowers, T., et al., "Empowering Students and Building Confidence in Novice

Programmers through Gauntlet." Proceedings of the 34^ ASEE/IEEE

Frontiers in Education Conference. Savannah, GA. October 2004.

[68] Fone, W., "Improving feedback from Multiple Choice Tests." Proceedings of

ICALT'02, Denmark, 2002. p.96.

[69] Fone, W., "A Topology and Framework to Aid the Design of Automated

assessment." Proceedings of ICALT 2003.

[70] Fone, W., "Design of MCQ Test." Proceeding of ITiCSE'04. UK 2004. p.250.

106

www.manaraa.com

[71] Gay, L. R., Educational Research: Competencies for Analysis and Application.

Charless Merrill Publishin Co. Columbus, OH. 1976.

[72] Gibson, J. P. and O'Kelly, J., "Software Engineering as a Model of

Understanding for Learning and Problem Solving." Proceedings of the 1st

International Computing Education Research Workshop, ICER 2005. Seattle,

Washington. October, 2005. pp.87-97.

[73] Gibbs, D. C, "The Effect of a Constructivist Learning Environment for Field-

Dependent/Independent Students on Achievement in Introductory Computer

Programming." Proceedings of the SIGCSE 2000 Symposium. Austin, TX.

March 2000. pp.207-211.

[74] Ginat, D., "Metacognitive Awareness Utilized for Learning Control Elements

in Algorithmic Problem Solving." Proceeding of ITiCSE'01. Canterbury, UK

2001. pp.81-84.

[75] Ginat, D., "On Varying Perspectives of Problem Decomposition." Proceedings of

the SIGCSE 2002 Symposium. Covington, KY. February-March 2002. pp.331-

335.

[76] Gonzalez-Sandoval, N. Personal Communications. 1995-2005.

[77] Gray, S., et al., "Suggestions for Graduated Exposure to Programming

Concepts Using Fading Worked Examples." Proceedings of the International

Computing Education Research Workshop, ICER 2007. Atlanta, Georgia.

September, 2007. pp.99-110.

[78] Green, T. R. G., "Instructions and Descriptions: Some Cognitive Aspects of

Programming and Similar Activities." ACM AVI 2000. Palermo, Italy, 2000.

107

www.manaraa.com

[79] Gross, P. and Power, K., "Evaluating Assessments of Novice Programming

Environments." In Proceedings oflCER 2005, p.99.

[80] Guggerty, L. and Olson, G., "Debugging by Skilled and Novice Programmers,"

CHF86 Proceedings, pp.171-174. April, 1986.

[81] Guzdial, M. and Soloway, E., "Log on Education: Teaching the Nintendo

Generation to Program." Communications of the ACM, April 2002. pp.17-21.

[82] Guzdial, M. and Tew, A. E., "Imagineering Inauthentic Legitimate Peripheral

Participation: An Instructional Design Approach for Motivating Computing

Education." Proceedings of the Second International Computing Education

Research Workshop, Canterbury, UK. 2006. pp.51-58.

[83] Haberman, B., et al., "Action Research as a Tool for Promoting Teacher

Awareness of Students' Conceptual Understanding." Proceedings of ITiCSE'03

Conference. Thessaloniki, Greece, June 2003. pp. 144-148.

[84] Haladyna, T. M., Developing and Validating Multiple-Choice Test Items.

Lawrence Earlbaum Associates. Hillsdale, NJ 1994.

[85] Haladyna, T. M., Writing Test Items to Evaluate Higher Order Thinking. Allyn

and Bacon. Boston, MA 1997.

[86] Henderson, P. B., "Modern Introductory Computer Science." Proceedings of the

SIGCSE 1987 Symposium. St. Louis, MI. February 1987. pp. 183-190.

[87] Hernandez-Valdelamar, J. Personal Communications. 1998-2005.

[88] Houlahan, J. Personal Communications. 2000-2005.

[89] Jadud, M. C, "A First Look at Novice Compilation Behavior Using Blue J." 16th

Workshop of the Psychology of Programming Interest Group. Conzenza, Italy.

April, 2004. pp. 181-192.

108

www.manaraa.com

[90] Jenkins, T., "The Motivation of Students of Programming." ITiCSE'01

Conference. ACM. Canterbury, UK, June 2001. pp.53-56.

[91] Jenkins, T., "Teaching Programming - A Journey from Teacher to Motivator."

Proceedings of the 2nd Annual Conference of the LTSN Centre for Information

and Computer Sciences, Loughborough, UK. August 2001. pp.48-52.

[92] Johns Hopkins University, "600.106 (E) Pre-Programming: Algorithmic

Thinking." JHU Catalog 2005-2007. http://catalog.jhu.edu/ (Last accessed

10/4/06.)

[93] Kelleher, C, et al., "Lowering the Barriers to Programming: A Taxonomy of

Programming Environments and Languages for Novice Programmers." ACM

Computing Surveys, June 2005.

[94] Kirov, N. "University education on programming." International Seminar, New

Bulgarian University. Borovec, September 25-26, 2004.

http://www.math.bas.bg/~nkirov/2004/borovec.html (Last accessed 10/4/06.)

[95] Knuth, D. E., "Algorithmic Thinking and Mathematical Thinking." American

Mathematical Monthly. No. 92. 1985. pp.170-181.

[96] Knuth, D. E., Selected Papers on Computer Science. Cambridge University

Press. Cambridge, MA. 1996.

[97] Kolikant, Y. B-D., "Students' Alternative Standards for Correctness."

Proceedings oflCER 2005, p.37.

[98] Koppelman, H., "Teaching Abstraction Explicitly." Proceedings of the

ITiCSE'01 Conference, Canterbury, UK. ACM. June 2001. p. 191.

109

http://catalog.jhu.edu/
http://www.math.bas.bg/~nkirov/2004/borovec.html

www.manaraa.com

[99] Kramer, D., "Algorithms should Mind your Business." OffshoreDev.com, July

23, 2002. http://www.outsourcing-russia.com/docs/?doc=680 (Last accessed

9/9/05.)

[100] Kramer, J., "Is Abstraction the Key to Computing?" Communications of the

ACM, April 2007. pp.36-42.

[101] Krishna, A. K. and Kumar, A. N., "A problem generator to learn expression:

evaluation in CSI, and its effectiveness." Journal of Computing Sciences in

Colleges. April 2001. pp.34-46.

[102] Krishna, R., "Databases and Artificial Intelligence: Infusing Critical Thinking

Skills into Content of AI Course." ITiCSE'05 Conference, Portugal. ACM. June

2005. pp.173-177.

[103] Koltun, P., et al, "Progress Report on the Study of Program Reading." ACM

publications, 1983. pp. 168-176.

[104] Kummerfeld, S. K. and Kay, J., "The Neglected Battle Fields of Syntax Errors."

Australasian Computing Education Conference, ACE 2003. Adelaide,

Australia.

[105] Lahtien, E., et al., "A Study of the Difficulties of Novice Programmers."

ITiCSE'05 Conference, Portugal. ACM. June 2005. pp. 14-19.

[106] Lane, H. C, "A preventing Tutoring System for Beginning Programming",

SIGCSE 2004 Doctoral Consortium. 2004.

[107] Lewis, T. L., "Using Individual Differences to Teach to Introductory Object-

Oriented Design Students." SIGCSE 2004, Doctoral Consortium. 2004.

[108] Linn, M. C. and Clancy, M. J., "The Case for Case Studies of Programming

Problems." Communications of the ACM. March 1992. pp. 121-132.

110

http://OffshoreDev.com
http://www.outsourcing-russia.com/docs/?doc=680

www.manaraa.com

[109] Lister, R. and Leaney, J., "Introductory Programming, Criterion-Referencing,

and Bloom." Proceedings of the SIGCSE 2002 Symposium. Covington, KY.

February-March 2002. pp. 143-147.

[110] Lister, R., Fitzgerald, S., et al, "A multi-national study of Reading and Tracing

Skills in Novice Programmers." Proceedings of ITiCSE'04. UK 2004. pp. 119-

150.

[I l l] Lopez-Gaona, A., "The Importance of Design in CS1." Inroads, The SIGCSE

Bulletin, June 2000. pp.53-55.

[112] Mayer, R. E., "The Psychology of Learning Basic." Communications of the

ACM. November 1979.

[113] Mayer, R. E., and Bayman, P. "Psychology of Calculator Languages: a

Framework for Describing Differences in Users' Knowledge." Communications

of the ACM. August 1981.

[114] Mayer, R. E. et al., "Learning to Program and Learning to Think: What's the

Connection." Communications of the ACM. July 1986.

[115] Mayer, R. E. (ed.) Teaching and learning Computer Programing, Lawrence

Erlbaum Associates, Publishers. Hilldsdale, NJ. 1988.

[116] Mayer, R. E., Thinking, Problem Solving, Cognition 2nd ed., W H Freeman &

Co. 1992.

[117] McCracken, M., et al., "A Multi-national, Multi-institutional Study of

Assessment of Programming Skills of First-year CS Students." Proceedings of

ITiCSE'01. pp. 125-140. 2001.

I l l

www.manaraa.com

[118] McDonald, P., "The Nature of Algorithm Understanding: A Phenomenographic

Investigation." Doctoral Consortium. SIGCSE 2004 Symposium. ACM.

Norfolk, VA. March 2004.

[119] Mclver, L., "The Effect of Programming Language on Error Rates of Novice

Programmers." 12th Workshop of the Psychology of Programming Interest

Group. Conzenza, Italy. April, 2000. pp. 181-192.

[120] McKinney, S. and Denton, L. F., "Houston, We Have a Problem: There's a Leak

in the CS1 Affective Oxygen Tank." Proceedings of the SIGCSE 2004

Symposium. ACM. Norfolk, VA. March 2004. pp.236-239.

[121] Meyer, B., et al., "Empirical study of novice error paths." Unpublished

technical report, August 2005.

<http://se.ethz.ch/~meyer/publications/teaching/novices.pdf> Accessed on:

December 19, 2006.

[122] National Research Council. Being Fluent with Information Technology.

National Academy Press, 1999.

[123] NCS Pearsons. Computer Programmer Aptitude Battery (CPAB). Reid London

House, 1993.

[124] Palakal, M., et al., "An Interactive Learning Environment for Breadth-First

Computing Science Curriculum." Proceedings of the SIGCSE 1998 Symposium.

Atlanta, GA. February 1998.

[125] Pane, J.F., et al., "Studying the Language and Structure in Non-Programmer's

Solutions to Programming Problems." International Journal of Human-

Computer Studies, pp.237-264. Academic Press, 2001.

112

http://se.ethz.ch/~meyer/publications/teaching/novices.pdf

www.manaraa.com

[126] Pane, J. F., "A Programming System for Children that is Designed for

Usability." PH.D. Thesis, CMU-CS-02-127. Carnegie Mellon University.

Pittsburgh, PA. May 3, 2002.

[127] Pea, R. D., "Language-Independent conceptual 'Bugs' in Novice Programming."

Journal of Educational Computing Research. Vol. 2 No. 1, 1986.

[128] Perkins, D., et al., "Conditions of Learning in Novice Programmers." In:

Soloway & Spohrer, Studying the Novice Programmer, 1989. pp.261-279.

[129] Petre, M., "Why Looking isn't Always Seeing: Readership Skills and Graphical

Programming." Communications of the ACM. June 1995.

[130] Petre, M., Personal Communication. Doctoral Consortium. SIGCSE 2004

Symposium. ACM. Norfolk, VA. March 2004.

[131] Pillay, N., "Developing Intelligent Programming Tutors for Novice

Programmers." Inroads, The SIGCSE Bulletin, June 2003. pp.78-82.

[132] Polya, G., How to Solve it. Princeton University Press. Princeton, NJ. 1945.

[133] Postner, L., "The Challenges of Learning to Program." SIGCSE 2003 Doctoral

Consortium. 2003.

[134] Pressman, R. S., Software Engineering: A Practitioner's Approach. McGraw

Hill, 2004

[135] Proulx, V. K, "Programming Patterns and Design Patterns in the Introductory

Computer Science Course." Proceedings of the SIGCSE 2000 Symposium.

Austin, TX. March 2000. pp.80-84.

[136] Rajlich, V. and Wilde, N., "The Role of Concepts In Program Comprehension."

Proceedings ofIWPC2002. pp.271-278.

113

www.manaraa.com

[137] Ramalingam, V. and Wiedenbeck, S., "An Empirical Study of Novice Program

Comprehesion in the Imperative and Object-oriented Styles." Seventh

Workshop on Empirical Studies of Programmers. Alexandria, Virginia. 1997.

pp.124-139.

[138] Raymond, D. R., "Reading Source Code." Proceedings of the 1991 CAS

Conference. IBM Canada Centre for Advanced Studies, Toronto, Ontario.

October, 1991. pp.3-16.

[139] Rieman, J., "A Field Study of Exploratory Learning Strategies." ACM

Transactions on Computer-Human Interaction. September 1996. pp. 189-218.

[140] Rosso, A. and Daniele, M., "Our Method to Teach Algorithmic Development."

Inroads, The SIGCSE Bulletin, June 2000. pp.49-52.

[141] Schou, C. D., et al., "Literary Criticism and Programming Pedagogy." ACM

publications, 1988. pp. 67-71.

[142] Schwartz, J., "Forrester: Skills Shortage Will Worsen Unless Industry Seeds

IT Talent." Dr. Dobb's Portal, Jun 13, 2006.

<http://www.ddj.com/dept/global/189400869 > Last accessed: June 18, 2006.

[143] Selley, N., The Art of Constructivist Teaching in Primary School. David Fulton

Publishers. London, UK. 1999.

[144] Seo, S. and Koro-Ljungberg, M., "A Hermeneutical Study of Older Korean

Graduate Students' Experiences in American Higher Education: From

Confucianism to Western Educational Values." Journal of Studies in

International Education, Vol.9, No.2, Summer 2005. pp. 164-187.

[145] Shaft, T. M., "Helping Programmers to Understand Computer Programs." Data

Base Advances. November 1995. pp.25-46.

114

http://www.ddj.com/dept/global/189400869

www.manaraa.com

[146] Sheil, B. A., "A Psychological Study of Programming." ACM Computing

Surveys. Vol. 13 No. 1, March 1981.

[147] Simon, S., et al., "The ability to articulate strategy as a predictor of

programming skill," Proceedings of the 8th Australian conference on Computing

education. Hobart, Australia, 2006. pp. 181-188.

[148] Skillprofiler Analytics, <http://www.skillprofiler.com/spdiff.asp> Accessed on

December 27, 2006.

[149] Sleeman, D., "The Challenges of Teaching Computer Programming".

Communications of the ACM. September 1986. pp. 840-841.

[150] Smith, P. and Webb, G. I., "Reinforcing a Generic Computer Model for Novice

Programmers." Proceedings of the Seventh Australian Society for Computers in

Learning in Tertiary Education Conference (ASCILITE '95). Melbourne,

Australia. 1995.

[151] Snyder, L., "Computer Scientist Says all Students Should Learn to Think

'Algorithmically'." (Interview by F. Olsen.) The Chronicle of Higher Education,

May 5, 2000. p.A49.

[152] Snyder, L., Fluency with Information Technology, Addison-Wesley, 2003.

[153] Soloway, E., "Learning to program = learning to construct mechanisms and

explanations." Communications of the ACM. September 1986. pp.850-858.

[154] Soloway, E. and Spohrer, J. C. (eds.) Studying the Novice Programmer,

Lawrence Erlbaum Associates, Publishers. Hilldsdale, NJ. 1989.

[155] Spohrer, J. C. and Soloway, E., "Novice Mistakes: Are the Folk Wisdoms

Correct?" Communications of the ACM. Julyl986. pp.624-632.

[156] Sophatsathit, P., "A Study of Programming Skill Development in Education."

115

http://www.skillprofiler.com/spdiff.asp

www.manaraa.com

[157] Steffe, L. P. and Gale, J. (eds.) Constructivism in Education. Lawrence

Erlbaum Associates, Publishers. Hilldsdale, NJ. 1995.

[158] Stone, J. A. and Madigan, E., "Inconsistencies and Disconnects."

Communications of the ACM. April 2007. pp.76-79.

[159] Stringer, E., Action Research in Education. Prentice Hall. Upper Saddle River,

NJ. 2004.

[160] Sydenham, P. H., Systems Approach to Engineering Design. Artech House.

Boston, MA. 2004.

[161] Thomas, L., et al., "Learning Styles and Performance in the Introductory

Programming Sequence." Proceedings of the SIGCSE 2002 Symposium.

Covington, KY. February-March 2002. pp.33-37.

[162] Thompson, S., et al. Problem Solving in General. June 1996.

<http://www.cs.kent.ac.uk/people/staff/djb/probSolving.html> Accessed on:

January 27, 2004.

[163] Thompson, S., How to Program it. 1996.

<http://www.cs.kent.ac.uk/people/staff/sjt/Haskell_craft/HowToProgIt.html>

Accessed on: January 27, 2004.

[164] Thompson, E., et al., "Exploring Learner Conceptions of Programming."

Proceedings of the Australasian Computing Education Conference, ACE 2006.

Hobart, Australia. 2006.

[165] Tucker, A., et al., Fundamentals of Computing I. McGraw Hill. 1994.

[166] Vasconcelos, J., Notas para el Curso Avanzado de Solucion de Problemas y

Programacion. Class Notes, 1998.

116

http://www.cs.kent.ac.uk/people/staff/djb/probSolving.html
http://www.cs.kent.ac.uk/people/staff/sjt/Haskell_craft/HowToProgIt.html

www.manaraa.com

<http://www.cs.jhu.edu/~jorgev/csl06/ProblemSolving.html> Accessed on:

December 12, 2006.

[167] Vasconcelos, J., Manual de Contraction de Programas. University Digital

Library, BDU. UNAM. Mexico, 2000.

<http://www.bibliodgsca.unam.mx/manuales/manual.pdf> Access on October

30, 2006.

[168] Vasconcelos, J. and Houlahan, J., "Development and Interpretation of a Survey

on Problem Solving Skills." Personal communication. August 28, 2003.

[169] Vasconcelos, J., "A Course in Algorithmic Thinking." (Poster.) SIGCSE 2004

Symposium. Norfolk, VA. March 2004.

[170] von Glasersfeld, E., "A Constructivist Approach to Teaching." In

Constructivism in Education. Steffe, L. P. and Gale, J. (eds.) Lawrence

Erlbaum Associates, Publishers. Hilldsdale, NJ. 1995. pp. 3-15.

[171] von Glasersfeld, E., "Cognition, Construction of Knowledge, and Teaching." In

Constructivism in Science Education, Matthews, M.R. (ed.) Kluwer Academic

Publishers. Dordrech, Netherlands. 1998. pp. 11-30.

[172] Wagner, T. A. and Harvey, R. J., "Developing a New Critical Thinking Test

Using Item Response Theory". SIOP 2003 Conference, Society for Industrial

and Organizational Psychology. Orlando, FL. 2003.

[173] Weimberg, G. M., The Psychology of Computer Programming. Van Nostrand

Reinhold. NY, 1971.

[174]Weiner, L. H., "The Roots of Structured Programming." ACM SIGCSE

Bulletin, June 1978. pp.243-254.

117

http://www.cs.jhu.edu/~jorgev/csl06/ProblemSolving.html
http://www.bibliodgsca.unam.mx/manuales/manual.pdf

www.manaraa.com

[175] Wen, J., et.al., The Study of Information Aptitude Scale Development. Institute

of Information and Computer Education (internal document). Taiwan, 2000.

[176] Whalley, J.L., et al., "An Australasian study of reading and comprehension

skills in novice programmers, using the bloom and SOLO taxonomies,"

Proceedings of the 8th Australian conference on Computing education. Hobart,

Australia, 2006. pp. 243-252.

[177] Wiedenbeck, S., "Factors Affecting the Success of Non-Majors in Learning to

Program." Proceedings of ICER 2005. Seattle, Washington. October 2005,

pp. 13-24.

[178] Winslow, L. E., "Programming Pedagogy—A psychological Overview." ACM

SIGCSE Bulletin, September 1996. pp. 17-25.

[179] Wirth, N., Algorithms + Data Structures = Programs. Prentice Hall. Englewood

Cliffs, N.J. 1976. Wirth, Niklaus. "CS Education: The Road Not Taken."

ITiCSE 2001 Conference. Aarhus, Denmark. ACM. June 2002. pp. 1-3.

[180] Zahorian, S. A., et al., "Question Model for Intelligent Questioning Systems in

Engineering Education." Proceedings of the 31st ASEE/IEEE Frontiers in

Education Conference. October 2001. Reno, NV. 2001.

[181] Ziegler, U. and Crews, T., "An Integrated Program Development Tool for

Teaching and Learning How to Program." Proceedings of the SIGCSE 1999

Symposium. New Orleans, LA. March 1999. pp.276-280.

118

www.manaraa.com

Appendix A

Surveying Problem Solving

A.l. Introduction

To better appreciate preconceptions and preliminary skills new students had when

starting a programming course, Vasconcelos and Houlahan designed a questionnaire

comprising questions from five ability domains involved in solving problems

algorithmically: (i) reading comprehension, (ii) problem identification, (Hi) algebraic

manipulation, (iv) stepwise planning, and (v) process analysis: tracing and

debugging. Questions and problems were selected to resemble those usually found in

introductory programming coursework but, rather than assessing knowledge or

dexterity, they were intended to find error patterns and trends that could indicate

fragile skills. The questionnaire developed is described in the following sections.

A.2. Reading Comprehension

This category was intended to test ability to read general texts and word problems

objectively. The applicant was asked to answer several questions without involving

119

www.manaraa.com

information not provided in the passage. Answers could indicate attention to details,

inference abilities, preconceptions, knowledge of key terms, and proper use of

quantifiers. (See figure A.l.)

Read this passage very carefully and mark as true (T) of false (F) the s tatements
below. Select the answer that best matches the information given in the passage. Do
not recur to any knowledge you may have of the topic.

Prime numbers fascinate and frustrate everyone who studies them. Their definition is
so simple and obvious; it is so easy to find a new one; multiplicative decomposition is
such a natural operation. Why, then, do primes resist attempts to order and regulate
them strongly? Do they have no order at all or are we too blind to see it? There is, of
course, some order hidden in the primes. The Sieve of Eratosthenes shakes the primes
out of the integers. First 2 is a prime. Now knock out every higher even integer (which
must all be divisible by 2). The next higher surviving integer, 3, must also be prime.
Knock out all its multiples, and 5 survives. Knock out the multiples of 5, and 7 remains
Keep on this way and each integer that falls through the sieve is a prime. This orderly
if slow procedure will find every prime. Furthermore, as n goes to infinity, we know
that ratio of primes to non-primes among the first n integers approaches (loge n) /n.
Unfortunately, the limit is only statistical and does not actually help in finding primes.

[Wheterell's Etudes]
T (

T (

T (

T (

T (

T (

T (

T (

T (

T (

T (

T (

T (

T (

) F (

) F (

) F (

) F (

) F (

) F (

) F (

) F ()

) F ()

) F ()

) F ()

) F ()

) F ()

) F ()

i All primes have a hidden order.
F. The statement uses universal quantifier.

• The sieve takes advantage of Euclid's technique.
F. Information not provided.
The input required by the sieve is numbers.
T. Comprehension check.

| By using the sieve, the resulting output are odd numbers.
T. The statement can be inferred from the text.
The passage describes the meaning of the prime numbers.
F. The statement has an incorrect interpretation.
The sieve detects any prime except 0.
F. Information not given in the text.
The input required by the sieve may be negative numbers.
F. Information not given in the text
In a sieve of m x n numbers, at least n2 are prime.
F. Wrong deduction
By using the sieve, the resulting output values are primes
T. Directly from the text..
The sieve takes advantage of Eratosthenes' technique.
T. Directly from the text.
The word "blind", 4 th line, means "lack of sight".
F. Unwanted meaning.
The word "blind", 4 t h line, means "clueless".
T. Deduced from text style
The passage describes the technique to find all the prime numbers.
F. Wrong quantifier (there is more than one technique).
The passage describes one technique to find all the prime numbers.
T. Correct quantifier.

FIGURE A . l . A R e a d i n g C o m p r e h e n s i o n Q u e s t i o n .

120

www.manaraa.com

Then, aiming to appreciate understanding of the reading, a subsequent

question asked the applicant to summarize the passage using his/her own

vocabulary. The answers could indicate writing skills, misunderstandings, and even

reluctance to write.

A.3. Problem identification

Within this category there were questions to test applicant's ability to summarize

and organize information, and to identify issues given a context. In addition, it also

checks generalization of rules, usually expressed in the form of algebraic relations.

Answers could indicate attention to word details, issues finding information,

understanding the problem, or translating it to a different domain. (See figure A.2.)

A can of paint has a label that says one-gallon covers x square feet. You have
to paint a cement block wall on its front side (only) with 2 coats of paint (you
need to paint it twice). The wall is I feet long and h feet high and t feet think.
What would you say to the person who asks you how to "figure out" the correct
number of gallons to buy?

() a) Multiply I by h by t and divide by 2.
() b) Multiply I by h, h by t, add those numbers together and

divide the last answer by x.
() c) Multiply 2 by I, that answer by x, and then divide by 2.
() d) Multiply 2 by h, that answer by I and then divide by x.

FIGURE A.2. A Problem Identification Question.

A.4. Algebraic Manipulat ion

The questions within this category tested applicant's ability to perform simple

arithmetic operations, either numerically (fig. A. 3) or in algebraic representation

(fig. A.4), to foreseen algorithm output, and to interpret word problems.

121

www.manaraa.com

Applicants' answer could indicate attention to numeric details, wording or

formula confusion, and concrete or abstract thinking.

Your younger brother is planning a sleepover with 5 friends. Your mother
told him to buy 2 hot dogs, 3 candy bars and something to read, for himself
and each guest. He also needs some soda, and knows that 1 liter of soda is
enough for 3 kids. How much food will he buy at the store?

a) 2 Hotdogs, 3 candies, 1 soda, 5 Comics
b) 10 Hotdogs, 15 candies, 2 sodas, 5 Comics
c) 10 Hotdogs, 15 candies, 1 soda, 6 Comics
d) 12 Hotdogs, 18 candies, 2 sodas, 6 Comics
e) 12 Hotdogs, 18 candies, 2 sodas, 5 Comics

FIGURE A.3. A Problem on Arithmetic Skills with Numerical Answer.

What is the result of following these instructions?

Step 1: Think of a number, but keep it silently in your mind.
Step 2: Take your number and multiply it by 2
Step 3: Add 8 to the previous result.
Step 4: Take the result in step 3 and subtract the number you started with.
Step 5: What is the answer you got?

What is your answer?

FIGURE A.4. A Problem on Arithmetic Skills with Algebraic Answer.

A.5. Planning Strategy

This category seeks to elucidate applicant's ability to describe simple tasks in

algorithmic fashion (fig. A.5). Answers can reveal levels of detail or abstraction,

issues in thought expression, misconceptions on algorithms, causal logic skills, and

proper use of assumptions. 21

21 This question was removed from the final survey because, after piloted, it showed to be of a higher

level with respect to the rest of the survey.

122

www.manaraa.com

Devise a strategy to calculate and report the average, maximum and minimum
fuel efficiencies for a car, expressed as miles per gallon, given any given list of
miles and gallons recorded for fill-ups, for example {(12,1), (140,7), (350,12),
(240,12), (n miles, m gallons)}. Write your detailed strategy in pseudocode
form, if possible.

FIGURE A. 5. A Problem on Planning.

A.6. Process Analysis

This section tested applicant's ability to work with short sequences of simple

instructions (fig. A.6): understand purpose of instructions, hand-tracing, and

debugging). The question is aimed to elucidate consistency in application of logic,

misconceptions in algorithms, inadequate assumptions, and intuition in loops and

conditionals.

You are given a program tc display decimal values of 1/1, %,
however it does not work correctly.
necessary corrections.

Set num to 0
While num < 5

Compute dec =
Display dec

Add 1 to num
End While

1/num

1/3, V4, 1/5,
Find the problem(s) and make the

FIGURE A. 6. A Problem on Debugging.

A. 7. Background

This section served to record applicant's preconceptions and understanding of

computing fundamentals. It included a basic assessment of student's intuition and

attitude towards programming and preferred learning "techniques" (fig. A.7.)

123

www.manaraa.com

1. What does a computer know?
2. What is the meaning of A = A + 1?
3. When Jean cannot figure out the answer to a question on a multiple-choice

test, she just chooses answer "b" because she has been told that this is a
good method to use. Jean is relying upon
questions that she cannot figure out.

(a) a guaranteed method
(b) an algorithm
(c) cognitive restructuring
(d) a heuristic
(e) inductive reasoning

to answer the

FIGURE A.7. Several Questions on general background

124

www.manaraa.com

A.8. Model Survey

Johns Hopkins University Department of Computer Science
Survey in Algorithmic Problem Solving

Name

List ALL Current Computer Science Courses, including sections:

Time Spent on this survey (not including the last 3 questions)

The following questionnaire is intended to be a diagnostic tool to improve our classes
based on your current abilities to solve problems. The results will not affect your final
grade in any way. Please, do it on your own and be completely honest, do not use any
book, notes or calculator, and do not correct any answer you have already written. If
you do not understand the question, or do not know the answer, indicate so.

1. Read this passage very carefully and answer the fol lowing five quest ions.

Prime numbers fascinate and frustrate everyone who studies them. Their definition is
so simple and obvious; it is so easy to find a new one; multiplicative decomposition is
such a natural operation. Why, then, do primes resist at tempts to order and regulate
them strongly? Do they have no order at all or are we too blind to see it? There is, of
course, some order hidden in the primes. The Sieve of Eratosthenes shakes the primes
out of the integers. First 2 is a prime. Now knock out every higher even integer (which
must all be divisible by 2). The next higher surviving integer, 3, must also be prime.
Knock out all its multiples, and 5 survives. Knock out the multiples of 5, and 7
remains. Keep on this way and each integer that falls through the sieve is a prime.
This orderly if slow procedure will find every prime. Furthermore, as n goes to
infinity, we know that the ratio of primes to nonprimes among the first n integers
approaches (loge n) In, Unfortunately, the limit is only statistical and does not actually
help in finding primes. [Wheterell's Etudes]

For each of the following statements mark them as true (T) or false (F) according to
the information given, or inferred from the text. Remember; select the answer that
best matches the information previously given. (Do not base your answers on any
prior knowledge.)

() a) All primes have a hidden order.
() b) The sieve takes advantage of Euclids' technique.
() c) The input required by the sieve is numbers.
() d) By using the sieve, the resulting output is odd numbers.
() e) The passage describes the meaning of the prime numbers.
() f) The sieve detects any prime except 0.

125

www.manaraa.com

() g) The input required by the sieve may be negative numbers.
() h) In a sieve of m x n numbers, at least n2 are prime.
() i) By using the sieve, the resulting output values are primes.
() j) The sieve takes advantage of Eratosthenes' technique.
() k) The word "blind", 4th line, means "lack of sight".
() 1) The word "blind", 4th line, means "clueless".
()m) The passage describes the technique to find all the prime numbers.
() n) The passage describes one technique to find all the prime numbers.

2. Rewrite the passage of question 1 using your own words. (Continue on
back if necessary.)

3. What would this sequence of instructions accomplish?

Step 1: Multiply the price by .07.
Step 2: Add that answer to the price.

a) Calculates a 7% sales tax.
b) Calculates a 7% price reduction.
c) Calculates a total price including a 7% sales tax.
d) Calculates a markup that raises the price 107%.

4. A can of paint has a label that says one-gallon covers x square feet. You
have to paint a cement block wall on its front side (only) with 2 coats of
paint (you need to paint it twice). The wall is I feet long and h feet high and
t feet think. What would you say to the person who asks you how to "figure
out" the correct number of gallons to buy?

a) Multiply I by h by t and divide by 2.
b) Multiply I by h, h by t, add those numbers together and divide the last answer by

x.
c) Multiply 2 by I, that answer by x, and then divide by 2.
d) Multiply 2 by h, that answer by I and then divide by x.
e)
5. How would you tell a younger person to find the total cost for gasoline for a trip of X
miles with a car that gets Y miles per gallon, if gas costs Z dollars per gallon?

a) Divide X by Y, then divide the result by Z.
b) Multiply X by Y, then divide the result by Z.
c) Multiply X by Y, and then multiply the result by Z.
d) Divide X by Y, then multiply the result by Z.

6. What would this sequence of instructions accomplish?

Step 1: Divide 100 by 24.
Step 2: Round that answer up to the next larger whole number.

a) Calculates how many gallons of gas are used to go 100 miles.

126

www.manaraa.com

b) Calculates how many vehicles are needed to transport 100 people if every vehicle
carries 24 people.

c) Calculates how many boxes will be completely filled with apples if 100 apples are
to be put in 24 boxes.

d) All of the above.

7. Devise a strategy to calculate and report the average, maximum and
minimum fuel efficiencies for a car, expressed as miles per gallon, given any
given list of miles and gallons recorded for fill-ups, for example
{(12,1),(140,7),(350,12),(240,12),..., (n miles, m gallons)}. Write your detailed
strategy in pseudocode form, if possible.

8. Your younger brother is planning a sleepover with 5 friends. Your mother
told him to buy 2 hot dogs, 3 candy bars and something to read, for himself
and each guest. He also needs some soda, and knows that 1 liter of soda is
enough for 3 kids. How much food will he buy at the store?

a) 2 Hotdogs, 3 candies, 1 soda, 5 Comics
b) 10 Hotdogs, 15 candies, 2 sodas, 5 Comics
c) 10 Hotdogs, 15 candies, 1 soda, 6 Comics
d) 12 Hotdogs, 18 candies, 2 sodas, 6 Comics
e) 12 Hotdogs, 18 candies, 2 sodas, 5 Comics

9. What is the result of following these instructions?
Step 1: Think of a number, but keep it silently in your mind.
Step 2: Take your number and multiply it by 2
Step 3: Add 8 to the previous result.
Step 4: Take the result in step 3 and subtract the number you started with.
Step 5: Write down your answer

10. You are given a program to display decimal values of 1/1, %, 1/3, V*, 1/5,
however it does not work correctly. Find the problem(s) and make the
necessary corrections.

Set num to 0

While num < 5

Compute dec = 1/ num

Display dec

127

www.manaraa.com

Add 1 to num

End While

11. These instructions should display the even numbers between 1 and 10
inclusive, in descending order. Verify for correctness. If this is the case,
explain the procedure, otherwise, explain the problem(s).

Set num to 10
Repeat

Subtract 2 from num
Until num = 1

12. Please answer the following questions to the best of your abilities.

12.1 What does a computer know?

12.2 What is the meaning of A = A + 1?

12.3 Describe in detail the action that the simplest Print command would have.

12.4 Describe in detail the action that the simplest Read command would have.

128

www.manaraa.com

12.5 When Jean cannot figure out the answer to a question on a multiple choice test,
she just chooses answer "b" because she has been told that this is a good method to
use. Jean is relying upon to answer the questions tha t she cannot
figure out.
a) a guaranteed method
b) an algorithm
c) cognitive restructuring
d) a heuristic
e) inductive reasoning

12.6 Dave is having trouble coming up with the answer to a math problem. He
decides to look through the book and finds the step-by-step procedure for solving
the problem. If he follows the steps in the book, he is using:

e) subgoals
f) working backwards
g) an algorithm
h) a heuristic
i) chunking

12.7 I prefer to (Select only one option per row)

a) () Solve a puzzle () Skip the puzzle
b) () Build a model () Buy a built model
c) () Understand laws of Physics () Know formulas used in Physics
d) () Read every paragraph in a paper () Read abstract and conclusion
e) () Follow procedures when dealing () Improvise in case of new problems

with new situations

12.8 Why do you think it is important to learn computer programming?

12.9 Why do you think it is important to learn algorithm design?

12.10 What is the best way an instructor can get your attention? (Select all that
apply)

a) By presenting funny facts.
b) By being argumentative.

129

www.manaraa.com

c) By being just informative.
d) By drawing pictures.
e) By asking questions.

(The following questions are under testing for use in future surveys. Do NOT include
the time it takes to answer them in your reported survey time.)

a. Between the points A and B there is a distance of 5 miles, and you are able
to run extremely fast, so you can go from A to B instantly, what is your speed.
(Remember, speed = distance / time)

b. A gas pump has being tested. Results show that every time the machine dispenses
fuel, it delivers two gallons less than displayed. What is the problem?

c. A rocket is scheduled for launching when a timer reaches the value of 0. If the
control software has this line "IF timer < 0 THEN release_clamps", when does the lift
off occur? Why?

130

www.manaraa.com

A.9. Analysis of Survey Administered

Johns Hopkins University Department of Computer Science
Survey in Algorithmic Problem Solving

Name J . H.

List ALL Current Computer Science Courses, including sections:

Time Spent on this survey (not including the last 3 questions)

The following questionnaire is intended to be a diagnostic tool to improve our classes
based on your current abilities to solve problems. The results will not affect your final
grade in any way. Please, do it on your own and be completely honest, do not use any
book, notes or calculator, and do not correct any answer you have already written. If
you do not understand the question, or do not know the answer, indicate so.

Purpose: Test "reading comprehension" in CS-related texts or word-problems without
the use of information not, provided, in the passage.

{The survey designer has to select a clear, short passage (from an already published
source) containing identifiable quantifiers, keywords, possibility to infer information or
to be connected with applicant current knowledge, possibility of being misinterpreted
because of poor reading, and context-dependent words ..., that the applicant is
supposed to detect in order answer the questions correctly.}

1. Read this passage very carefully and answer the following five questions.

Prime numbers fascinate and frustrate everyone who studies them. Their definition is
so simple and obvious; it is so easy to find a new one; multiplicative decomposition is
such a natural operation. Why, then, do primes resist at tempts to order and regulate
them strongly? Do they have no order at all or are we too blind to see it? There is, of
course, some order hidden in the primes. The Sieve of Eratosthenes shakes the primes
out of the integers. First 2 is a prime. Now knock out every higher even integer (which
must all be divisible by 2). The next higher surviving integer, 3, must also be prime.
Knock out all its multiples, and 5 survives. Knock out the multiples of 5, and 7
remains. Keep on this way and each integer that falls through the sieve is a prime.
This orderly if slow procedure will find every prime. Furthermore, as n goes to
infinity, we know that the ratio of primes to nonprimes among the first n integers
approaches (loge n) /n. Unfortunately, the limit is only statistical and does not actually
help in finding primes. [Wheterell's Etudes]

For each of the following statements mark them as true (T) or false (F) according to
the information given, or inferred from the text. Remember; select the answer that

131

www.manaraa.com

best matches the information previously given. (Do not base your answers on any
prior knowledge.)

(T) a) All primes have a hidden order.
F. Quantifiers misinterpreted.
(T) b) The sieve takes advantage of Euclids'technique.
F. Information not provided.
(T) c) The input required by the sieve is numbers.
(F) d) By using the sieve, the resulting output is odd numbers.
T. Answer must be inferred from text.
(F) e) The passage describes the meaning of the prime numbers.
(T) f) The sieve detects any prime except 0.
F. Information not given in the text.
(F) g) The input required by the sieve may be negative numbers.
(F) h) In a sieve o f m x f i numbers, at least n2 are prime.
(T) i) By using the sieve, the resulting output values are primes.
(T) j) The sieve takes advantage of Eratosthenes' technique.
(F) k) The word "blind", 4 t h line, means "lack of sight".
(T) 1) The word "blind", 4 th line, means "clueless".
(T)m) The passage describes the technique to find all the prime numbers.
F. Wrong quantifier (there is more than one technique).
(T) n) The passage describes one technique to find all the prime numbers.

Probable tendency to perform quantum reading or "fast reading".

2. Rewrite the passage of question 1 using your own words. (Continue on back if
necessary.)

The Sieve of Eratosthenes is used to find all the prime numbers out of the integers.

Purpose: Verify applicant's reading comprehension (understanding) by rewriting the
passage using his/her own vocabulary.

Poor rephrase may indicate lack of reading skills or understanding. (There is no
description of the method, It's more like a title.)

3. What would this sequence of instructions accomplish?

Step 1: Multiply the price by .07.
Step 2: Add that answer to the price.

j) Calculates a 7% sales tax.
k) Calculates a 7% price reduction.
1) Calculates a total price including a 7% sales tax.
m) Calculates a markup that raises the price 107%.

Purpose: Interpreting a [sequential] list of basic actions (instructions).

Categories of issues on algorithms interpretation detected through this question:
a. Question was answered right [OK], procedure purpose was identified, either
by just reading the steps or by understanding each step and. the sequence as a whole.

132

www.manaraa.com

4. A can of paint has a label that says one-gallon covers x square feet. You have to
paint a cement block wall on its front side (only) with 2 coats of paint (you need to
paint it twice). The wall is I feet long and h feet high and t feet think. What would
you say to the person who asks you how to "figure out" the correct number of gallons
to buy?

1) Multiply / by h by t and divide by 2.
g) Multiply I by h, h by t, add those numbers together and divide the last answer by

x.
h) Multiply 2 by I, tha t answer by x, and then divide by 2.
i) Multiply 2 by h, tha t answer by I and then divide by x.

5. How would you tell a younger person to find the total cost for gasoline for a trip of X
miles with a car that gets Y miles per gallon, if gas costs Z dollars per gallon?

e) Divide X by Y, then divide the result by Z.
f) Multiply X by Y, then divide the result by Z.
g) Multiply X by Y, and then multiply the result by Z.
h) Divide X by Y, then multiply the result by Z.

6. What would this sequence of instructions accomplish?

Step 1: Divide 100 by 24.
Step 2: Round that answer up to the next larger whole number.

e) Calculates how many gallons of gas are used to go 100 miles.
f) Calculates how many vehicles are needed to transport 100 people if every vehicle

carries 24 people.
g) Calculates how many boxes will be completely filled with apples if 100 apples are

to be put in 24 boxes.
h) All of the above.

7. Devise a strategy to calculate and report the average, maximum and minimum fuel
efficiencies for a car, expressed as miles per gallon, given any given list of miles and
gallons recorded for fill-ups, for example {(12,1),(140,7),(350,12),(240,12),..., (n miles,
m gallons)}. Write your detailed strategy in pseudocode form, if possible.

Search the minimum miles value in the list
Search the maximum miles value in the list

Purpose: Ability to describe some simple task in algorithmic way, and to elucidate the
depth of detail, order and abstraction in the answer.

General idea., but without strategy or details.

8. Your younger brother is planning a sleepover with 5 friends. Your mother told him
to buy 2 hot dogs, 3 candy bars and something to read, for himself and each guest. He
also needs some soda, and knows that 1 liter of soda is enough for 3 kids. How much
food will he buy at the store?

f) 2 Hotdogs, 3 candies, 1 soda, 5 Comics

133

www.manaraa.com

g) 10 Hotdogs, 15 candies, 2 sodas, 5 Comics
h) 10 Hotdogs, 15 candies, 1 soda, 6 Comics
i) 12 Hotdogs, 18 candies, 2 sodas, 6 Comics
j) 12 Hotdogs, 18 candies, 2 sodas, 5 Comics

9. What is the result of following these instructions?
Step 1: Think of a number, but keep it silently in your mind.
Step 2: Take your number and multiply it by 2
Step 3: Add 8 to the previous result.
Step 4: Take the result in step 3 and subtract the number you started with.
Step 5: Write down your answer
13

Purpose: Test ability to hand-trace and express answer in algebraic form.

Answer not in algebraic form: x+8

10. You are given a program to display decimal values of 1/1, 54, 1/3, lA, 1/5, however it
does not work correctly. Find the problem(s) and make the necessary corrections.

Set num to 1

While num <= 5

Compute dec = 1/ num

Display dec

Add 1 to num

End While

11. These instructions should display the even numbers between 1 and 10 inclusive, in
descending order. Verify for correctness. If this is the case, explain the procedure,
otherwise, explain the problem(s).

Set num to 10
Repeat

Subtract 2 from num
Until num = 1

Until condition is not reached (10,8.6,4.2,0) condition must be changed to num=0

Problem not explained.

12. Please answer the following questions to the best of your abilities.

12.1 What does a computer know?

computer knows how to do something specified by a program written by a human_

134

www.manaraa.com

Anwsered correctly at a high leuel_

12.2 What is the meaning of A = A + 1?

incerment the value of A BY one

12.3 Describe in detail the action that the simplest Print command would have.

_printH a character string in the monitor screen

Details ?

12.4 Describe in detail the action that the simplest Read command would have.

gets a character out of the keyboard to assign it to a variable

Details ?

12.5 When Jean cannot figure out the answer to a question on a multiple choice test,
she just chooses answer "b" because she has been told that this is a good method to
use. Jean is relying upon to answer the questions that she cannot
figure out.
f) a guaranteed method
g) an algorithm
h) cognitive restructuring
i) a heuristic
j) inductive reasoning

12.6 Dave is having trouble coming up with the answer to a math problem. He
decides to look through the book and finds the step-by-step procedure for solving
the problem. If he follows the steps in the book, he is using:

n) subgoals
o) working backwards

135

www.manaraa.com

p) an algorithm
q) a heuristic
r) chunking

12.7 I prefer to (Select only one option per row)

f) (X) Solve a puzzle () Skip the puzzle
g) (X) Build a model () Buy a built model
h) (X) Understand laws of Physics () Know formulas used in Physics
i) (X) Read every paragraph in a paper () Read abstract and conclusion
j) (X) Follow procedures when dealing () Improvise in case of new problems

with new situations

12.8 Why do you think it is important to learn computer programming?

TO GET ADVANTAGE OF COMPUTER TECHNOLOGIES AND DEVELOP
SOLUTIONS OF MY OWN

(Personal
interest) , .

12.9 Why do you think it is important to learn algorithm design?

__TO LEARN TO COMMUNICATE SOLUTIONS TO PROBLEMS.
(Documentation, teaching?)

12.10 What is the best way an instructor can get your attention? (Select all that
apply)

f) By presenting funny facts.
g) By being argumentative,
h) By being just informative,
i) By drawing, pictures.
j) By asking questions.

(The following questions are under testing for use in future surveys. Do NOT include
the time it takes to answer them in your reported survey time.)

a. Between the points A and B there is a distance of 5 miles, and you are able
to run extremely fast, so you can go from A to B instantly, what is your speed.
(Remember, speed = distance / time)

infinitum_(5/t, when t->0)

136

www.manaraa.com

is it possible to have an infinite speed?

b. A gas pump has being tested. Results show that every time the machine dispenses
fuel, it delivers two gallons less than displayed. What is the problem?

the tube retains the fuel

dispatching system is altered

Simplest answer. Also, the gas counter may be off by two.

c. A rocket is scheduled for launching when a timer reaches the value of 0. If the
control software has this line "IF timer < 0 THEN release_clamps", when does the lift
off occur? Why?

1 second later than zero

Never, ignition system starts without the clamps ever being released.

137

www.manaraa.com

Vita

Jorge Vasconcelos was born in Mexico City in 1971. He graduated with a Bachelor of

Science in Computer Engineering from the Arturo Rosenblueth Foundation in 1996.

He entered the Department of Computer Science at the Johns Hopkins University,

receiving a Master of Science and Engineering in 2000, and has been working in

Computer Science Education towards a Ph.D. His research work has moved within

four trends: (i) application of the constructivist paradigm to computer science

education, (ii) creation of instruments for early detection of cognitive abilities

required in algorithmic problem solving, (Hi) study of individual differences aiming

to better differentiate instruction within the computer science classroom, and (iv)

design of curricular models focused in problem solving and algorithmic thinking. His

current work was awarded honorable mention in the Sixth Graduate Research

Symposium at The College of William and Mary. He has taught introductory

computer science for 17 years and published several textbooks for Mexican high

schools.

138

